Под названием “транспортная задача” объединяется широкий круг задач с единой математической моделью. Классическая транспортная задача задача о наиболее




Скачать 126.44 Kb.
НазваниеПод названием “транспортная задача” объединяется широкий круг задач с единой математической моделью. Классическая транспортная задача задача о наиболее
Дата публикации12.06.2016
Размер126.44 Kb.
ТипЗадача
edushk.ru > Спорт > Задача
Под названием “транспортная задача” объединяется широкий круг задач с единой математической моделью. Классическая транспортная задача – задача о наиболее экономном плане перевозок однородного продукта или взаимозаменяемых продуктов из пунктов производства в пункты потребления, встречается чаще всего в практических приложениях линейного программирования. Линейное программирование является одним из разделов математического программирования – области математики, разрабатывающей теорию и численные методы решения многомерных экстремальных задач с ограничениями.

Огромное количество возможных вариантов перевозок затрудняет получение достаточно экономного плана эмпирическим или экспертным путем. Применение математических методов и вычислительных в планировании перевозок дает большой экономический эффект. Транспортные задачи могут быть решены симплексным методом однако матрица системы ограничений транспортной задачи настолько своеобразна, что для ее решения разработаны специальные методы. Эти методы, как и симплексный метод, позволяют найти начальное опорное решение, а затем, улучшая его получить оптимальное решение.

^ 1. Формулировка транспортной задачи.
Однородный груз сосредоточен у m поставщиков в объемах . Данный груз необходимо доставить n потребителям в объемах . Известны , i=1,2,,…,m, j=1,2,…,n- стоимости перевозки единицы груза от каждого I-го поставщика каждому j-му потребителю. Требуется составить такой план перевозок, при котором запасы всех потребителей полностью удовлетворены и суммарные затраты на перевозку всех грузов минимальны.

Исходные данные транспортной задачи обычно записываются в таблице (таб1.1).








































….

….











Таблица1.1.
Исходные данные задачи могут быть представлены также в виде вектора запасов поставщиков А=(), вектора запросов потребителей

В=() и матрицы стоимостей .
В транспортных задачах под поставщиками и потребителями понимаются различные промышленные и сельскохозяйственные предприятия, заводы, фабрики, слады, магазины и т.д. Однородными считаются грузы, которые могут быть перевезены одним видом транспорта. Под стоимостью перевозок понимаются тарифы, расстояния, время, расход топлива и т.п.
^ 2. Математическая модель транспортной задачи.

Переменными (неизвестными) транспортной задачи являются i=1,2,,…,m, j=1,2,…,n – объемы перевозок от каждого i-го поставщика каждому j-му потребителю. Эти переменные можно записать в виде матрицы перевозок

.

Так как произведение определяет затраты на перевозку груза от i-го поставщика j-му потребителю, то суммарные затраты на перевозку всех грузов равны . По условию задачи требуется обеспечить минимум суммарных затрат. Следовательно, целевая функция имеет вид .

Система ограничений задачи состоит из двух групп уравнений. Первая группа из m уравнений описывает тот факт, что запасы всех m поставщиков вывозятся полностью:

, i=1,2,…,m.

Вторая группа из n уравнений выражает требование полностью удовлетворить запросы всех n потребителей:

, j=1, 2, … , n.

Учитывая условие неотрицательности объемов перевозок, математическую модель задачи можно записать так:

, (1)

, i=1,2,…,m , (2)

, j=1, 2, … , n, (3)
, i=1,2,,…,m, j=1,2,…,n (4)

В рассмотренной модели транспортной задачи предполагается, что суммарные запасы поставщиков равны суммарным запросам потребителей, т.е. .

Такая задача называется задачей с правильным балансом, а ее модель – закрытой. Если же это равенство не выполняется, то задача называется задачей с неправильным балансом, а ее модель – открытой.

Математическая формулировка транспортной задачи такова: найти переменные задачи , i=1,2,,…,m, j=1,2,…,n, удовлетворяющие системе ограничений (2), (3), условиям неотрицательности (4) и обеспечивающие минимум целевой функции (1).

Математическая модель транспортной задачи может быть записана в векторном виде.. Тогда математическая модель транспортной задачи запишется следующим образом:

, (7)

=, (8)

, i=1,2,,…,m, j=1,2,…,n (9)

^ 3. Необходимое и достаточное условия разрешимости транспортной задачи.
Теорема1. Для того чтобы транспортная задача линейного программирования имела решение, необходимо и достаточно, чтобы суммарные запасы поставщиков равнялись суммарным запросам потребителей:

, т.е. задача должна быть с правильным балансом.
^ 5. Опорное решение транспортной задачи.
Опорным решением транспортной задачи называется любое допустимое решение, для которого вектор-условия, соответствующие положительным координатам, линейно независимы.

Ввиду того, что ранг системы векторов-условий транспортной задачи равен m+n-1, опорное решение не может иметь отличных от нуля координат более m+n-1. Число отличных от нуля координат невырожденного опорного решения равно m+n-1,а для вырожденного опорного решения меньше m+n-1

Любое допустимое решение транспортной задачи можно записать в ту же таблицу, что и исходные данные. Клетки таблицы транспортной задачи, в которых находится отличные от нуля или базисные нулевые перевозки, называются занятыми, остальные – незанятыми или свободными. Клетки таблицы нумеруются так, что клетка, содержащая перевозку , т.е. стоящая в i-й строке и j-м столбце, имеет номер (i,j). Каждой клетке с номером (i,j) соответствует переменная , которой соответствует вектор-условие .

Для того чтобы избежать трудоемких вычислений при проверке линейной независимости вектор-условий, соответствующих положительным координатам допустимого решения, вводят понятие цикла. Циклы также используются для перехода от одного опорного решения к другому.

Циклом называется такая последовательность клеток таблицы транспортной задачи (i1,j1), (i1,j2), (i2,j2), … , (ik,j1), в которой две и только две соседние клетки расположены в одной клетке или столбце, причем первая и последняя клетки также находятся в одной строке или столбце.

Цикл изображают в таблице транспортной задачи в виде замкнутой ломаной линии. В любой клетке цикла происходит поворот звена ломаной линии на 900. Простейшие циклы изображены на рис1, где звездочкой отмечены клетки таблицы, включенные в состав цикла.
Теорема3. (о взаимосвязи линейной зависимости векторов-условий и возможности образования цикла). Для того чтобы система векторов-условий транспортной задачи были линейно зависимой, необходимо и достаточно, чтобы из соответствующих клеток таблицы можно было выделить часть, которая образует цикл.

Следствие. Допустимое решение транспортной задачи Х=(), i=1,2,,…,m, j=1,2,…,n является опорным тогда и только тогда, когда из занятых им клеток таблицы нельзя образовать ни одного цикла.
^ 6. Методы построения начального опорного решения.
Метод северо-западного угла.

Существует ряд методов построения начального опорного решения, наиболее простым из которых является метод северо-западного угла. В данном методе запасы очередного поставщика используются для обеспечения запросов очередных потребителей до тех пор, пока не будут исчерпаны полностью, после чего используются запасы следующего по номеру поставщика.

Заполнение таблицы транспортной задачи начинается с левого верхнего угла и состоит из ряда однотипных шагов. На каждом шаге, исходя из запасов очередного поставщика и запросов очередного потребителя, заполняется только одна клетка и соответственно исключается из рассмотрения один поставщик или потребитель. Осуществляется это таким образом:

  1. если , то и исключается поставщик с номером i, , k=1, 2, …, n, kj, ;

  2. если , то и исключается потребитель с номером j, , k=1, 2, …, m, ki, ;

  3. если , то и исключается либо i-й поставщик, , k=1, 2, …, n, kj, , либо j-й потребитель, , k=1, 2, …, m, ki, .

Нулевые перевозки принято заносить в таблицу только тогда, когда они попадают в клетку (i,j), подлежащую заполнению. Если в очередную клетку таблицы (i,j) требуется поставить перевозку, а i-й поставщик или j-й потребитель имеет нулевые запасы или запросы, то в клетку ставится перевозка, равная нулю (базисный нуль), и после этого, как обычно, исключается из рассмотрения соответствующий поставщик или потребитель. Таким образом, в таблицу заносят только базисные нули, остальные клетки с нулевыми перевозками остаются пустыми.

Во избежание ошибок после построения начального опорного решения необходимо проверить, что число занятых клеток равно m+n-1 и векторы-условия, соответствующие этим клеткам, линейно независимы.

Теорема4. Решение транспортной задачи, построенное методом северо-западного угла, является опорным.
Метод минимальной стоимости.

Метод минимальной стоимости прост, он позволяет построить опорное решение, достаточно близкое к оптимальному, так как использует матрицу стоимостей транспортной задачи С=(), i=1,2,,…,m, j=1,2,…,n. Как и метод северо-западного угла, он состоит из ряда однотипных шагов, на каждом из которых заполняется только одна клетка таблицы, соответствующая минимальной стоимости min {}, и исключается из рассмотрения только одна строка (поставщик) или один столбец (потребитель). Очередную клетку, соответствующую , заполняют по тем же правилам, что и в методе северо-западного угла. Поставщик исключается из рассмотрения, если его запасы использованы полностью. Потребитель исключается из рассмотрения, если его запросы удовлетворены полностью. На каждом шаге исключается либо один поставщик, либо один потребитель. При этом если поставщик еще не исключен, но его запасы равны нулю, то на том шаге, когда от данного поставщика требуется поставить груз, в соответствующую клетку таблицы заносится базисный нуль и лишь, затем поставщик исключается из рассмотрения. Аналогично с потребителем.

Теорема5. Решение транспортной задачи, построенное методом минимальной стоимости, является опорным.
^ 7. Переход от одного опорного решения к другому.
В транспортной задаче переход от одного опорного решения к другому осуществляется с помощью цикла. Для некоторой свободной клетки таблицы строится цикл, содержащий часть клеток, занятых опорным решений. По этому циклу перераспределяются объемы перевозок. Перевозка загружается в выбранную свободную клетку и освобождается одна из занятых клеток, получается новое опорное решение.

Теорема6. (о существовании и единственности цикла). Если таблица транспортной задачи содержит опорное решение, то для любой свободной клетки таблицы существует единственный цикл, содержащий эту клетку и часть клеток, занятых опорным решением.

Означенный цикл.

Цикл называется означенным, если его угловые клетки пронумерованы по порядку и нечетным клеткам приписан знак «+», а четным – знак «-» (рис 2.) 1 2

+ -

- 5 +

6

+ -

  1. 4

рис 2.
Сдвигом по циклу на величину называется увеличение объемов перевозок во всех нечетных клетках цикла, отмеченных знаком «+», на и уменьшение объемов перевозок во всех четных клетках, отмеченных знаком «-», на .

Теорема7. Если таблица транспортной задачи содержит опорное решение, то при сдвиге по любому циклу, содержащему одну свободную клетку, на величину = получится опорное решение.
^ 9. Метод потенциалов.
Широко распространенным методом решения транспортных задач является метод потенциалов. Этот метод позволяет упростить наиболее трудоемкую часть вычислений – нахождение оценок свободных клеток.

Теорема8. (признак оптимальности опорного решения). Если допустимое решение Х=(), i=1,2,,…,m, j=1,2,…,n транспортной задачи является оптимальным, то существует потенциалы (числа) поставщиков , i=1,2,,…,m и потребителей , j=1,2,…,n, удовлетворяющие следующим условиям:

+= при >0, (12)

+ при =0. (13)
^ 11. Алгоритм решения транспортной задачи методом потенциалов.
Порядок решения транспортной задачи методом потенциалов следующий.

  1. Проверяют выполнение необходимого и достаточного условия разрешимости задачи. Если задача имеет неправильный баланс, то вводят фиктивного поставщика или потребителя с недостающими запасами или запросами и нулевыми стоимостями перевозок.

  2. Строят начальное опорное решение (методом минимальной стоимости или каким-либо другим методом) и проверяют правильность его построения, для чего подсчитывают количество занятых клеток (их должно быть m+n-1) и убеждаются в линейной независимости векторов-условий (методом вычеркивания).

  3. Строят систему потенциалов, соответствующих опорному решению. Для этого решают систему уравнений += при >0. Для того чтобы найти частное решение системы, одному из потенциалов (обычно тому, которому соответствует большее число занятых клеток) задают произвольно некоторое значение (чаще нуль). Остальные потенциалы однозначно определяются по формулам =- при >0, (24)

4если известен потенциал , и

=- при >0, (25)

если известен потенциал .

  1. Проверяют, выполняется ли условие оптимальности для свободных клеток таблицы. Для этого вычисляют оценки для всех свободных клеток по формулам =+- и те оценки, которые больше нуля, записывают в левые нижние углы клеток. Если для всех свободных клеток 0, то вычисляют значение целевой функции, и решение задачи заканчивается, так как полученное решение является оптимальным. Если же имеется хотя бы одна клетка с положительной оценкой, то опорное решение не является оптимальным.

  2. Переходят к новому опорному решению, на котором значение целевой функции будет меньше. Для этого находят клетку таблицы задачи, которой соответствует наибольшая положительная оценка max{}=. Строят цикл, включающий в свой состав данную клетку и часть клеток, занятых опорным решением. В клетках цикла расставляют поочередно знаки «+» и «-», начиная с «+» в клетке с наибольшей положительной оценкой. Осуществляют сдвиг (перераспределение груза) по циклу на величину =. Клетка со знаком «-», в которой достигается , остается пустой. Если минимум достигается в нескольких клетках, то одна из них остается пустой, а в остальных проставляют базисные нули, чтобы число занятых клеток оставалось равным m+n-1. Далее возвращаемся к пункту 3 алгоритма.


^ 14. Применение транспортной задачи для решения

экономических задач.

Задача о размещении производства

с учетом транспортных затрат.

Имеется (проектируется) m пунктов производства с объемами производства и n пунктов потребления с объемами потребления . Затраты на производство единицы продукции в каждом i-м пункте производства известны и равны , i=1,2,…,m. Стоимости перевозки единицы груза от каждого i–го производителя каждому j–му потребителю известны и равны , i=1,2,,…,m, j=1,2,…,n. Суммарные объемы производства превосходят суммарные объемы потребления. Требуется составить план сокращения (размещения) производства, обеспечивающий минимальные производственно-транспортные затраты.

Задача решается как транспортная задача, матрица стоимостей которой составляется как сумма матриц:

С=()=(+), i=1,2,,…,m, j=1,2,…,n.

Вводится фиктивный потребитель. Затем задача решается обычным способом. Далее сокращается производство в пунктах, продукция которых в оптимальном плане перевозок поставляется фиктивному потребителю.
^ Задача о назначениях, или проблема выбора.

Имеется m групп людей (станков) численностью , которые должны выполнять n видов работ (операций) объемом . Известна производительность каждой i–й группы людей (станков) при выполнении каждого j–го вида работ (операций) , i=1,2,,…,m, j=1,2,…,n. . Требуется так распределить людей (станки) для выполнения работ (операций), чтобы суммарный объем производства работ (операций) был максимальным.

Составим математическую модель данной задачи по аналогии с транспортной задачей. Обозначим - число людей (станков) i–й группы, занятых j–го вида работ (операций). Запишем математическую модель
, (30)

, i=1,2,…,m , (31)

, j=1, 2, … , n, (32)
, i=1,2,,…,m, j=1,2,…,n. (33)

Для использования алгоритмов, разработанных для транспортной задачи, можно перейти от нахождения максимума к нахождению минимума. Для этого нужно умножить коэффициенты целевой функции на (-1), тогда целевая функция будет иметь вид

-.

Можно также изменить критерий оптимальности. Например, вместо (i,j) использовать новый критерий оптимальности (i,j).

Добавить документ в свой блог или на сайт

Похожие:

Под названием “транспортная задача” объединяется широкий круг задач с единой математической моделью. Классическая транспортная задача задача о наиболее iconЗадача 2 определение дипломатов районной олимпиады задача 3 отчет...
Каждый документ должен иметь заголовок оформленный по правилам ведения деловой документации

Под названием “транспортная задача” объединяется широкий круг задач с единой математической моделью. Классическая транспортная задача задача о наиболее iconТранспортная задача линейного программирования
Необходимо составить план перевозок, при котором запросы всех пунктов потребления были бы удовлетворены за счет имеющихся продуктов...

Под названием “транспортная задача” объединяется широкий круг задач с единой математической моделью. Классическая транспортная задача задача о наиболее iconЗадача э/т
Задача э/т – дать не просто описание э/явлений, а показать их взаимосвязь, т е раскрыть систему э/явлений, процессов и законов

Под названием “транспортная задача” объединяется широкий круг задач с единой математической моделью. Классическая транспортная задача задача о наиболее iconЗадача математической статистики
Создание методов сбора и обработки статистических данных для получения научных и практических данных

Под названием “транспортная задача” объединяется широкий круг задач с единой математической моделью. Классическая транспортная задача задача о наиболее iconМ. А. Рыбникова о выразительном чтении
Задача заключается … в том, чтобы научить живо по­нимать и переживать содержание, выраженное … живым потоком слов. Задача в том,...

Под названием “транспортная задача” объединяется широкий круг задач с единой математической моделью. Классическая транспортная задача задача о наиболее icon1. Сущность понятия «Стратегический менеджмент». Главная задача стратегического...
Ителей, осуществляет гибкое регулирование и своевременные изменения в организации, адекватные воздействию окружающей среды и позволяющие...

Под названием “транспортная задача” объединяется широкий круг задач с единой математической моделью. Классическая транспортная задача задача о наиболее iconЗадача состоит в том, чтобы всем нам хорошо известный в общих чертах...
Ф 65 Факты сознания. Назначение человека. Наукоучение / Пер с нем. — Мн.: Харвест, М.: Act, 2000. — 784 с. — (Классическая философская...

Под названием “транспортная задача” объединяется широкий круг задач с единой математической моделью. Классическая транспортная задача задача о наиболее iconЗадача воспитателя в области развития речи детей младшего дошкольного...
Развитие речи у детей младшего дошкольного возраста посредством устного народного творчества

Под названием “транспортная задача” объединяется широкий круг задач с единой математической моделью. Классическая транспортная задача задача о наиболее iconМетодические рекомендации «Исследование правовой культуры личности...
Школа модель гражданского общества. Почти впервые в истории педагогики у школы появилась задача попытаться не только передать прошлое...

Под названием “транспортная задача” объединяется широкий круг задач с единой математической моделью. Классическая транспортная задача задача о наиболее iconЭкзаменационные вопросы по курсу «Проектирование и технология рэс»
Задача технологии как науки – выявление физических, химических, механических и других закономерностей с целью определения и использования...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
edushk.ru
Главная страница