Лазеры

Тема : Лазеры
Цель: на примере лазера показать как развитие фундаментальной науки (квантовой теории) приводит к прогрессу в самых различных областях техники.
Ход урока
I. Организационный момент

Вариант I
1. Какая формула была выведена экспериментально Бальмером для спектра водорода?
2. Наименьший радиус орбиты электрона в невозбужденном атоме водорода г =5,28 10-11 м. Определите радиус орбиты электрона в атоме водорода, когда электрон находится на третьем энергетическом уровне.
(Ответ: 4J5Л0~П) м.)
3. Энергия атома водорода в нормальном состоянии Е 1 = -13,53 эВ. Определите энергию кванта, поглощенного атомом водорода, если| электрон перешел с первого энергетического уровня на третий.
Энергия электрона на n-й орбите стационарного состояния атома водорода: Еп= Е1/п2.
(Ответ: 12,02 эВ.)
4. Определите длину волны электромагнитного излучения атома водорода при переходе электрона с пятого энергетического уровня на второй. Постоянная Ридберга R = 109737,31 см-1.
(Ответ: 4,37-10 7 м.)
5. Электрон, связанный с атомом, при переходе с более удален­ной на менее удаленную от ядра атома орбиту в момент перехода…
(Ответ: излучает энергию.)
6. Определите минимальную энергию возбуждения атома водо­рода, если его энергия в нормальном состоянии Ej = -13,53 эВ.
(Ответ: 3,39 эВ.)
7. С ростом главного квантового числа п (энергетического уровня атома) энергия стационарного состояния атома …
(Ответ: увеличивается.)
8. Электрон в атоме водорода перешел с пятого энергетического уровня на второй. Как при этом изменилась энергия атома?
(Ответ: уменьшилась.)
9. Какое утверждение было бы справедливо, если бы движение электрона в атоме подчинялось законам классической динамики? 1) При движении вокруг ядра электрон должен непрерывно излучать электромагнитные волны; 2) Через короткое время электрон должен упасть на ядро; 3) Частота электромагнитных волн, испускаемых атомом, должна быть равна частоте обращения электрона вокруг ядра.
(Ответ: Через короткое время электрон должен упасть на ядро.)
10. Что с точки зрения планетарной модели атома Резерфорда удерживает электроны и не позволяет им разлетаться?
(Ответ: кулоновские силы.)
Вариант II
1. Какую формулу предложил Бальмер для определения волны, испускаемой атомом водорода?
(Ответ:
2. Наименьший боровский радиус орбиты электрона в невозбужденном атоме водорода г/ = 5,28-10-11 м. Определите радиус орбиты электрона, когда атом водорода находится на пятом энергетическом уровне.
3. Энергия атома водорода в нормальном состоянии E1 = -13,53 эВ, Определите энергию кванта, поглощенного атомом водорода, если электрон перешел с первого энергетического уровня на второй, Энергия элекгрона на n-й орбите стационарного состояния атома
водорода: Еп = Е1/п2
(Ответ:10,147 эВ.)
4. Определите длину волны электромагнитного излучения атома водорода при переходе электрона с четвертого энергетического уровня на второй. Постоянная Ридберга R = 10973,31 см4.
(Ответ: 0,49 мкм.)
5. Электрон, связанный с атомом, при переходе со второй орбита на четвертую…
(Ответ: поглощает энергию.)
6. Определите минимальную энергию кванта, поглощенного ато­мом водорода, если при этом электрон перешел с первого на третий энергетический уровень. Энергия первого энергетического уровня £/ = -13,53эВ *
(Ответ: 12,02 эВ.)
7. Состояние атомов, соответствующее всем разрешенным энер­гетическим уровням, кроме низкого, называется…
(Ответ: возбужденным.)
8. Электрон в атоме водорода перешел с первого энергетического уровня на третий. Как при этом изменилась энергия атома?
(Ответ: увеличилась.)
9. Если бы движение электрона в атоме подчинялось законам классической электродинамики, то какое утверждение было бы не­верным?
(Ответ: в стационарном состоянии атом энергию не излучает.)
10. Электрон и протон движутся с одинаковой скоростью. Какой из этих частиц соответствует меньшая энергия?
(Ответ: электрону.)

Вступительное слово учителяB последние годы внедрение лазерной техники во все отрасли народного хозяйства значительно расширилось. Уже сейчас лазеры используются в космических иссле­дованиях, в машиностроении, в медицине, в вычисли­тельной технике, в самолетостроении и военной технике. Появились публикации, в которых отмечается, что ла­зеры пригодились и в агропроме. Непрерывно совершен­ствуется применение лазеров в научных исследованиях– физических, химических, биологических. B результате гонки вооружений ускоренными темпами идет исполь­зование лазеров в различных видах военной техники – наземной, морской, воздушной. Ряд образцов лазерной техники – дальномеры, высо­томеры, локаторы, системы самонаведения – поступили па вооружение в армиях. В военных приборах в качестве источника излу­чения используется лазер. В 1955–1957 годах появились работы Н.Г. Басова, Б.М. Вула, Ю.М. Попова и А.М. Прохорова в России, а также американских ученых Ч. Таунса и А. Шавлова, в которых были приведены научные обоснования для соз­дания квантовых генераторов оптического диапазона. В декабре 1960 года Т. Мейман сумел построить первый успешно работающий лазер с рубиновым стержнем в ка­честве активного вещества.В 1960 году под руководством американского ученого А. Джавана был создан газовый лазер. Он использовал в качестве активной среды смесь газов гелия и неона.В 1962 году практически одновременно в России и в США был создан лазер, у которого в качестве активного вещества применили полупроводниковый элемент.Заслуги русских ученых в деле развития квантовой электроники, а также вклад американских ученых были отмечены Нобелевской премией. Её получили в 1964 году Н.Г. Басов, А.М. Прохоров и Ч. Таунс. С этого момента началось бурное развитие лазеров и приборов, основанных на их использовании.Большой вклад советские ученые и инженеры внесли в решение такой проблемы, как обеспечение безопас­ности посадки самолетов в сложных условиях.В последнее время получила распространение еще одна важная область применения лазеров – лазерная технология, с помощью которой обеспечивается резка, сварка, легирование, скрайбирование металлов и обра­ботка интегральных микросхем.Значительный эффект получен и при использовании лазеров в медицине. Был создан лазерный скальпель. Возникла лазерная микрохирургия глаза.Лазеры применяются в стоматологии, нейрохирургии, при операциях на сердце и диагностике заболеваний. Ультрафиолетовые лазеры применяют для раннего обнаружения раковых опухолей.Имеются определенные успехи и по использованию лазеров в агропроме.В пищевой промышленности исследуются возможно­сти применения лазеров для улучшения качества хлебо­продуктов, ускорения производства безалкогольных на­питков с улучшенными свойствами, сохранения качества мяса и мясопродуктов. Даже такие работы, как предва­рительная обработка режущего инструмента и подшип­ников в аппаратах пищевого машиностроения, дает значительное увеличение срока службы этих устройств.Огромные средства направ­ляются на создание лазеров большой мощности, а также рентгеновских и химических лазеров.

ЛАЗЕРЫ.
На вопрос о том, что такое лазер1, академик Н.Г. Басов отвечал так: “Лазер – это устройство, в котором энергия, например тепловая, химическая, электрическая, преобразуется в энергию электромагнитного поля – лазерный луч. При таком преобразовании часть энергии неизбежно теряется, но важно то, что полученная в результате лазерная энергия обладает более высоким качеством. Качество лазерной энергии определяется её высокой концентрацией и возможностью передачи на значительное расстояние. Лазерный луч можно сфокусировать в крохотное пятнышко диаметром порядка длины световой волны и получить плотность энергии, превышающую уже на сегодняшний день плотность энергии ядерного взрыва. С помощью лазерного излучения уже удалось достичь самых высоких значений температуры, давления, магнитной индукции. Наконец, лазерный луч является самым ёмким носителем информации и в этой роли – принципиально новым средством её передачи и обработки”.
На языке квантовой теории вы­нужденное излучение означает пере­ход атома из высшего энергетиче­ского состояния в низшее, но не самопроизвольно, как при обычном излу­чении, а под влиянием внешнего воздействия.
1 Слово лазер образовано как сочетание первых букв слов английского выражения “Light Amplification by Stimulated Emission of Radiation” (“усиление света при помощи индуцированного излучения”).
Лазеры. Еще в 1940 г. советский физик В.А. Фабрикант указал на возможность использования явления вынужденного излучения для уси­ления электромагнитных волн. В 1954 г. советские ученые Н.Г. Ба­сов и А.М. Прохоров и независимо от них американский физик Ч. Таунс использовали явление индуцирован­ного излучения для создания микро­волнового генератора радиоволн с длиной волны =1,27 см.
Лазерные источники света обладают рядом существенных преимуществ по сравнению с другими источниками света:
1. Лазеры способны создавать пучки света с очень малым углом расхождения (около 10-5 рад). На Луне такой пучок, испущенный с Земли, дает пятно диаметром 3 км.
2. Свет лазера обладает исклю­чительной монохроматичностью. В отличие от обычных источников света, атомы которых излучают свет не­зависимо друг от друга, в лазерах атомы излучают свет согласованно. Поэтому фаза волны не испытывает нерегулярных изменений.
3. Лазеры являются самыми мощными источниками света. В уз­ком интервале спектра кратковре­менно (в течение промежутка време­ни продолжительностью порядка 10-13 с) у некоторых типов лазеров достигается мощность излучения 1017 Вт/см2, в то время как мощ­ность излучения Солнца равна толь­ко 7103 Вт/см2, причем суммарно по всему спектру. На узкий же интер­вал =10-6 см (ширина спектральной линии лазера) приходится у Солнца всего лишь 0,2 Вт/см2. На­пряженность электрического поля в электромагнитной волне, излучаемой лазером, превышает напряженность поля внутри атома.
Объяснение учителя.
В обычных условиях большинство атомов находится в низшем энергетическом состоянии. Поэтому при низких температурах вещества не светятся.
При прохождении электромагнитной волны сквозь вещество её энергия поглощается. За счёт поглощённой энергии волны часть атомов возбуждается, т. е. Переходит в высшее энергетическое состояние. При этом от светового пучка отнимается энергия
h=E2–E1
равная разности энергий между уровнями 2 и 1. На рисунке 1, а схематически представлены невозбуждённый атом и электромагнитная волна в виде отрезка синусоиды. Электрон находится на нижнем уровне. На рисунке 1, б изображён возбуждённый атом, поглотивший энергию. Возбуждённый атом может отдать свою энергию соседним атомам при столкновении или испустить фотон в любом направлении.
=
эта волна будет не ослабляться, а, напротив, усиливаться за счёт индуцированного излучения. Под её воздействием атомы согласованно переходят в низшие энергетические со­стояния, излучая волны, совпадаю­щие по частоте и фазе с падающей волной. На рисунке 2, а показаны возбужденный атом и волна, а на ри­сунке 2, б схематически показано, что атом перешел в основное состоя­ние, а волна усилилась.
2 21 1
а б Рис. 2
Существуют различные методы получения среды с возбужденными состояниями атомов. В рубиновом лазере для этого используется специальная мощная лампа. Атомы возбуждают­ся за счет поглощения света.
Но двух уровней энергии для ра­боты лазера недостаточно. Каким бы мощным ни был свет лампы, число возбужденных атомов не будет боль­ше числа невозбужденных. Ведь свет одновременно и возбуждает атомы, и вызывает индуцированные пере­ходы с верхнего уровня на нижний.3
1 Рис. 3
2
Выход был найден в использо­вании трех энергетических уровней (общее число уровней всегда ве­лико, но речь идет о “работающих” уровнях). На рисунке 3 изобра­жены три энергетических уровня. Су­щественно, что в отсутствие внешнего воздействия время, в течение которого атомная система находит­ся в различных энергетических со­стояниях (“время жизни”), неодинаково. На уровне 3 система живет очень мало, порядка 10-8 с, после чего самопроизвольно переходит в состояние 2 без излучения света. (Энергия при этом передается крис­таллической решетке.) “Время жиз­ни” в состоянии 2 в 100 000 раз больше, т. е. составляет около 10-3 с. Переход из состояния 2 в состояние 1 под действием внешней электромаг­нитной волны сопровождается излу­чением. Это используется в лазерах. После вспышки мощной лампы сис­тема переходит в состояние 3 и спустя промежуток времени около 10-8 с оказывается в состоянии 2, в котором живет сравнительно долго. Таким образом и создается “перенаселенность” возбужденного уровня 2 по сравнению с невозбужденным уров­нем 1.
Необходимые энергетические уровни имеются в кристаллах рубина. Рубин – это ярко-красный крис­талл оксида алюминия Al2O3 с примесью атомов хрома (около 0,05%). Именно уровни ионов хрома в кристалле обладают требуемыми свой­ствами.
Из кристалла рубина изготовляется стержень с плоскопараллельными торцами. Газоразрядная лампа, име­ющая форму спирали (рис. 4), дает сине-зеленый свет. Кратковре­менный импульс тока от батареи кон­денсаторов емкостью в несколько ты­сяч микрофарад вызывает яркую вспышку лампы. Спустя малое время энергетический уровень 2 становится “перенаселенным”.
В результате самопроизвольных переходов 21 начинают излучаться волны всевозможных направлений. Те из них, которые идут под углом к оси кристалла, выходят из него и не играют в дальнейших процессах ни­какой роли. Но волна, идущая вдоль оси кристалла, многократно отражается от его торцов. Она вы­зывает индуцированное излучение возбужденных ионов хрома и быстро усиливается.Один из торцов рубинового стержня делают зеркальным, а дру­гой полупрозрачным. Через него выходит мощный кратковременный (длительностью около сотни микро­секунд) импульс красного света, об­ладающий теми феноменальными свойствами, о которых было рас­сказано выше. Волна является когерентной, так как все атомы излучают согласованно, и очень мощной, так как при индуци­рованном излучении вся запасенная энергия выделяется за очень малое время.
Рис. 4

Принято различать два типа лазеров: усилители и генераторы. На выходе усилителя появляется лазер­ное излучение, когда на его вход (а сам он уже находит­ся в возбужденном состоянии) поступает незначительный сигнал на частоте перехода. Именно этот сигнал стиму­лирует возбужденные частицы к отдаче энергии. Проис­ходит лавинообразное усиление. Таким образом – на входе слабое излучение, на выходе – усиленное.
С генератором дело обстоит иначе. На его вход излучение на частоте перехода уже не подают, а возбуж­дают и, более того, перевозбуждают активное вещество. Причем если активное вещество находится в перевозбуждённом состоянии, то существенно растет вероятность самопроизвольного перехода одной или нескольких час­тиц с верхнего уровня на нижний. Это приводит к воз­никновению стимулированного излучения.
Второй подход к классификации лазеров связан с фи­зическим состоянием активного вещества. С этой точки зрения лазеры бывают твёрдотельными (например, рубиновый, стеклянный или сапфировый), газовыми (например, гелий-неоновый, аргоновый и т. п.), жидкостными, если в качестве активного вещества исполь­зуется полупроводниковый переход, то лазер называют полупроводниковым.
Третий подход к классификации связан со способом возбуждения активного вещества. Различают следующие лазеры: с возбуждением за счет оптического излучения, с возбуждением потоком электронов, с возбуждением солнечной энергией, с возбуждением за счет энергии взрывающихся проволочек, с возбуждением химической энергией, с возбуждением с помощью ядерного излуче­ния (последние привлекают сейчас пристальное внима­ние зарубежных военных специалистов). Различают так­же лазеры по характеру излучаемой энергии и ее спектральному составу. Если энергия излучается импульсно, то говорят об импульсныx лазерах, если непрерывно, то лазер называют лазером с непрерывным излу­чением. Есть лазеры и со смешанным режимом рабо­ты, например полупроводниковые. Если излучение лазе­ра сосредоточено в узком интервале длин волн, то лазер называют монохроматичным, если в широком интервале, то говорят о широкополосном лазере.
Еще один вид классификации основан на использова­нии понятия выходной мощности. Лазеры, у которых не­прерывная (средняя) выходная мощность более 106 Вт, называют высокомощными. При выходной мощнос­ти в диапазоне 105…103 Вт имеем лазеры средней мощ­ности. Если же выходная мощность менее 10-3 Вт, то говорят о маломощных лазерах.
Одной из характеристик лазеров является длина волны излучаемой энергии. Диапазон волн лазерного излучения простирается от рентгеновского участка до дальнего инфракрасного, т.е. от 10-3 до 102 мкм. За об­ластью 100 мкм лежит,
В зависимости от конструкции открытого зеркального резонатора различают лазеры с постоянной доброт­ностью и ла­зеры с модулированной добротностью – у такого лазера одно из зеркал может быть размещено, в частности, на оси электродвигателя, который вращает это зеркало. В данном случае добротность резонатора периодически меняется от нулевого до максимального значения. Такой лазер называют лазером с Q-модуляцией.
Твердотелые лазерыПолупроводниковые л.Газовые л. ЭлектронныеХимические л. генераторыЭксимерные л.0,1 1,0 10 100 1000 10000 100000 мкм Рис. 5образно говоря, “целина”. Но она простирается только до миллиметрового участка, который осваивается радистами. Этот неосвоенный участок непре­рывно сужается, и есть надежда, что его освоение завер­шится в ближайшее время. Доля, приходящаяся на раз­личные типы генераторов, неодинакова (рис. 5). Наибо­лее широкий диапазон у газовых квантовых генераторов.
Другой важной характеристикой лазеров является энергия импульса. Она измеряется в джоулях к наибольшей величины достигает у твердотельных гене­раторов – порядка 103 Дж. Третьей характеристикой яв­ляется мощность. Энергия в единицу времени и дает мощность. Газовые генераторы, которые излучают не­прерывно, имеют мощность от 10-3 до 102 Вт. Милливаттную мощность имеют генераторы, использую­щие в качестве активной среды гелий-неоновую смесь. Мощность порядка 100 Вт имеют генераторы на CO2. С твердотельными генераторами разговор о мощности имеет особый смысл. К примеру, если взять излучаемую энергию в 1 Дж, сосредоточенную в интервале времени в одну секунду, то мощность составит 1 Вт. Но длитель­ность излучения генератора на рубине составляет 10-4 с, следовательно, мощность составляет 10 000 Вт, т.е. 10 кВт. Если же длительность импульса уменьшена с помощью оптического затвора до 10-6 с, мощность состав­ляет 106 Вт, т.е. мегаватт. Это не предел! Можно увеличить энергию в импульсе до 103 Дж и сократить его длительность до 10-9 с и тогда мощность достигнет 1012 Вт. А это очень большая мощность. Известно, что когда на металл приходится интенсивность луча, дости­гающая 105 Вт/см2, то начинается плавление металла, при интенсивности 107 Вт/см2 – кипение металла, а при 109 Вт/см2 лазерное излучение начинает сильно ионизировать пары вещества, превращая их в плазму.
Еще одной важной характеристикой лазера является расходимость лазерного луча. Наиболее узкий луч имеют газовые лазеры. Он составляет величину в не­сколько угловых минут. Расходимость луча твердотель­ных лазеров около 1…3 угловых градусов. Полупровод­никовые лазеры имеют лепестковый раскрыв излучения: в одной плоскости около одного градуса, в другой – около 10…15 угловых градусов.
Следующей важной характеристикой лазера является диапазон длин волн, в котором сосредоточено из­лучение, т.е. монохроматичность. У газовых лазеров монохроматичность очень высокая, она составляет 10-10, т.е. значительно выше, чем у газоразрядных ламп, кото­рые раньше использовались как стандарты частоты. Твердотельные лазеры и особенно полупроводниковые имеют в своем излучении значительный диапазон частот, т. е. не отличаются высокой монохроматичностью.
Очень важной характеристикой лазеров является коэффициент полезного действия. У твердо­тельных он составляет от 1 до 3,5%, у газовых 1…15%, у полупроводниковых 40…60%. Вместе с тем принима­ются всяческие меры для повышения кпд лазеров, ибо низкий кпд приводит к необходимости охлаждения ла­зеров до температуры 4…77 К, а это сразу усложняет конструкцию аппаратуры.
Сообщения обучающихся
Функцио­нальная схема такого лазера приведена на рис. 6. Он состоит из пяти блоков: излучающей головки, блока кон­денсаторов, выпрямительного блока, блока поджига, пульта управления. Излучающая головка преобразует электрическую энергию сначала в световую, а затем и в монохроматическое лазерное излучение. Блок кон­денсаторов обеспечивает накопление энергии, а выпря­мительный блок служит для преобразования переменного тока в постоянный, которым и заряжаются конденса­торы. Блок поджига вырабатывает очень высокое напря­жение, которым осуществляется первоначальный пробой газа в лампах-вспышках. Поскольку первый лазер был сделан при использовании в качестве активного вещест­ва рубинового стержня, то рассмотрим его устрой­ство. Излучающая головка рубинового лазера состояла из держателя рубина, осевой втулки, двух ламп накачки и цилиндрического рефлектора. Держатели рубина смен­ные и предназначены под рубиновые стержни различных размеров и диаметров.Используемый в приборе рубин представлял собой окись алюминия, в которой часть атомов алюминия заме­щена атомами хрома. Количеством хрома определяется цвет рубина, так, бледно-розовый рубин содержит 0,05% хрома, красный – 0,5%. Производят такой искусственный рубин следующим образом. В печах при высокой темпе­ратуре выращивают заготовки, называемые булями. Булям придают форму стержня. Торцевые поверхности стержня обрабатывают с высокой точностью и затем полируют. При обработке торцевых поверхностей их де­лают параллельными с точностью около 9…19 угловых секунд и покрывают серебряным или диэлектрическим слоем с высоким коэффициентом отражения. Чистота поверхности соответствует 12-му классу. Этот стержень помещают между двумя лампами-вспышками, которые, в свою очередь, находятся в цилиндрическом рефлекторе. Таким образом осуществляется распределение светового потока от ламп-вспышек на рубиновом стержне. Внут­ренняя поверхность рефлектора покрыта окисью магния, имеющей коэффициент отражения 0,9 – это обеспечивает увеличение кпд излучающей головки. Блок поджига Излучающая Пульт головка управления Блок Выпрямительный конденсаторов блок
Рис. 6. Функциональная схема оптического генератора
Для таких лазеров в качестве активного вещества ис­пользуют либо смесь газов, либо вещество, находящееся в парообразном состоянии. Газовая среда облегчает полу­чение непрерывного стимулированного излучения, по­скольку для перевода вещества в возбужденное состояние требуется меньшая энергия. Впервые в качестве активного вещества применялась смесь гелия и неона. Атом гелия в процессе газового разряда возбуждается электронами тока и переходит с основного уровня 1 на уровень 2. При столкновении атомов гелия с атомами неона последние также возбуждаются и совершают пере­ход на один из четырех верхних подуровней (рис. 7). В связи с тем, что перераспределение энергии при столк­новении двух частиц происходит с минимальным изме­нением общей внутренней энергии, то атомы неона пере­ходят в основном именно па уровень 2, а не на уровень 3 или 4. Вследствие этого создается перенаселенность верхнего уровня 2. При переходе атомов неона с уровня 2 на один из подуровней 3 и с уровня 3 на уровень 4 про­исходит излучение. Поскольку уровень 2 состоит из че­тырех, а уровень 3 – из десяти подуровней, то теоретиче­ски имеются более тридцати возможных переходов. Однако только пять переходов дают стимулированное излучение, которое сосредоточено на длинах волн: 1,118; 1,153; 1,160; 1,199; 1,207 мкм.E, э-В
He+ Ne+
2520 219 34He Ne0 1 1Рис. 7. Схема энергетических уровней гелий-неоновой смеси.

В этих лазерах рабочей средой служат жидкие диэле­ктрики с примесными рабочими атомами. Оказалось, что, растворяя редкоземельные элементы в некоторых жид­костях. можно получить структуру энергетических уровней, очень сходную со структурой уровней примесных атомов в твердых диэлектриках. Поэтому принцип работы жидкостных лазеров тот же, что и твердотельных. Преимущества жидкостных лазеров очевидны: во-первых. не нужно ни варить стекло высокого качества, ни растить були для кристаллов. Во-вторых, жидкостью можно за­полнять любой объем, а это облегчает охлаждение ак­тивного вещества путем циркуляции самой жидкости в приборе.Разработан метод получения жидких активных ве­ществ с примесями гадолиния, неодима и самария. При экспериментах по получению стимулированного излуче­ния жидкое вещество помещали в резонатор со сфери­ческими зеркалами, подобный тем, которые использу­ют в газовых лазерах. Если лазер работал в импульсном режиме, то в специальном охлаждении жидкого вещества не было необходимости. Если же прибор работал в не­прерывном режиме, то активное вещество заставляли циркулировать по охлаждающей и рабочей системам.Был создан и исследован жидкостный лазер с актив­ным веществом, которое излучало в диапазоне 0,5…0,58 мкм (зеленая часть спектра). Это излучение хорошо проникает в воду на большие глубины, поэтому такие генераторы представляют интерес для создания подвод­ных локаторов.

В создании полупроводникового лазера приоритет принадлежит советским ученым.Принцип работы полупроводникового лазера может быть объяснен следующим образом. Согласно квантовой теории электроны в полупроводнике могут занимать две широкие энергетические полосы (рис. 8). Нижняя пред­ставляет собой валентную зону, а верхняя – зону прово­димости. В нормальном чистом полупроводнике при низкой температуре все электроны связаны и занимают энергетический уровень, расположенный в пределах валентной зоны. Если на полупроводник подействовать электрическим током или световыми импульсами, то часть электронов перейдет в зону проводимости. В ре­зультате перехода в валентной зоне окажутся свободные места, которые в физике называют “дырками”. Эти дыр­ки играют роль положительного заряда. Произойдёт перераспределение электронов между уровнями валентной зоны и зоны проводимости, и можно говорить, в определенном смысле, о перенаселенности верхней энергетической зоны. ЗоныПроводимости Е-заполнение ЭлектроныЕ-запрещение Дырки Е-незаполнениеВалентная зонаРис.8. Схема энергетических уровней полупроводникового лазера.
ХИМИЧЕСКИЙ ЛАЗЕР.
Химическим лазерам приписывают практическое ис­пользование в самом ближайшем будущем. Они работают без электрического питания. Для этого потоки химических реагентов должны перемещаться и реагировать. Инверсия населенностей уровней энергии возникает при возбуждении энергией, выделяющейся в химической ре­акции. Для химического лазера имеется принципиальная возможность работы без внешнего источника электриче­ской энергии. Вся необходимая энергия может быть по­лучена за счет химической реакции. В одном из наи­более перспективных химических лазеров основные про­цессы могут быть представлены следующей серией ре­акции
F + H2 HF* + Н;
H + F2 HF* + F;
HF* HF + h.

Важное значение имеют ультрафиолетовый и рентгеновский участки диапа­зона спектра частот. Однако первый освоен крайне слабо. Создана часть приборов на аргоне, криптоне и азоте. Они излучают в диапазоне волн 0,29…0,33 мкм и имеют очень незначительную мощность. Лишь работы последнего вре­мени показали, что могут быть созданы и лазеры вы­сокой мощности. Для этого пригодны так называе­мые эксимерные лазеры на аргоне, криптоне и ксеноне.
ЛАЗЕР
Принцип действия такого лазера основан на преобразовании энергии спектрального пучка релятиви­стских электронов в магнитном поле в излучение в опти­ческом диапазоне волн. Из рис. 9 видно, что ускори­телем электронов является устройство, выполненное в виде тороида, вокруг которого располагаются магнитные катушки. Магнитное поле, создаваемое этими катушками, управляется по определенному закону, обеспечивающему ускорение электронов от одного оборота к другому. Это позволяет получить очень высокие скорости электронов. Выбрасываемые из тороида электроны попадают в уст­ройство, называемое линейным ускорителем. Оно образовано магнитами с чередующимися полюсами. Это устройство напоминает резонатор. В нем образуется оп­тическое излучение, которое и выводится наружу. По­скольку процесс преобразования энергии электронов в оптическое излучение осуществляется непосредственно, то такой лазер обладает высоким кпд и может работать в режиме повторяющихся импульсов. Другим, очень важ­ным преимуществом лазера на свободных электронах, как утверждается, является возможность перестройки длины волны излучения, что особенно важно для обеспе­чения более эффективного прохождения излучения в ат­мосфере. Первые экспериментальные установки были слишком громоздкими. Ряд последующих образцов позволил зарубежным специалистам высказать мнение, что в будущем лазеры на свободных электронах найдут применение в системах оружия, размещаемого на космических и авиационных летательных аппаратах.
Рис. 9. Схема лазера на свободных электронах:
1-зеркало; 2-пучок электронов; 3-луч лазера; 4-знакопеременное магнитное поле; 5-ускоритель электр.

Этот лазер получил широкое распространение, благо­даря низкому порогу генерации и высокой теплопроводности активного элемента, что позволяет получать гене­рацию при большой частоте повторения импульсов и в непрерывном режиме.Длина волны излучения лазера равна 1,064 мкм, мак­симальная длина активного элемента около 150 мм, энергия в одиночном импульсе до 30 Дж, длительность импульсов около 10 нс, а предельная частота повторе­ния – 500, кпд около 1 %.

Свое название этот лазер получил потому, что в не­органических растворителях с активными лазерными ионами отсутствует водород. Именно отсутствие групп атомов с высококолебательными частотами и позволяет осуществить в них эффективную лазерную генерацию Nd3+ по четырехуровневой схеме с поглощением света накачки собственными полосами поглощения неоди­ма.
Эти лазеры имеют в своей основе токсичные и вязкие жидкости, которые к тому еще и агрессивны, что значи­тельно сужает выбор возможных конструкционных мате­риалов (кварц, стекло, тефлон) и вынуждает производить тщательную герметизацию кювет. Весьма сложной задачей является конструирование узлов прокачки рабо­чей жидкости.Длина волны генерации составляет 1,056; 1,0525 мкм. Лазеры могут работать как в режиме свободной генера­ции, так и в моноимпульсном режиме, причем для них характерен режим самомодуляции добротности, проявляющийся при малых значениях добротности резонатора.

Одним из достижении лазерной техники является по­лучение стимулированного излучения от среды, образо­ванной парами меди. Эти пары являются следствием газового разряда в гелии при большой частоте повторения импульсов и значительной средней мощности, обес­печивающей получение высокой температуры в газораз­рядной трубке – около 1600 °К. Излучение сосредо­точено на волнах 0,51 и 0,58 мкм. Кроме высокого коэффициента усиления, такие лазеры дают кпд, дохо­дящий до 1%. Средняя мощность лазера достигает 50Вт.В связи с большим коэффициентом усиления и малой длительностью существования инверсии населенности для получения достаточно малой расходимости луча эффективно применение неустойчивых резонаторов.
Литература.
1. Федоров Б.Ф. Лазеры. Основы устройства и применение. – М.: ДОСААФ, 1988.2. Гершензон Е.М., Малов Н.Н. Курс общей физики: Оптика и атомная физика. – М.: Просвещение, 1981.3. Мякишев Г.Я. Физика: Учеб. Для 11 кл. – М.: Просвещение, 1993.4. Савельев И.В. Курс общей физики: Квантовая оптика. Атомная физика. Физика твёрдого тела. Физика атомного ядра и элементарных частиц. – М.: Наука, 1987.
5. Орлов В.А. Лазеры в военной технике. – М.: Воениздат, 1976.

Оцените статью
Добавить комментарий