Отчет «Создание баз данных в области наноэлектроники как элементов информационной составляющей инфраструктуры наноиндустрии» — страница 9

^
В данном случае рассматриваются такие комбинации материалов, которые обеспечивают наиболее сильное отражение электромагнитных волн. Длина волны излучения, эффективно взаимодействующего с многослойной структурой, и ее период связаны соотношением λ = 2d sinα, где α — это угол скольжения падающего луча. Диапазон длин волн, в котором эффективно использование этих устройств, простирается от экстремального ультрафиолетового излучения (λ = 60 нм) до жесткого рентгеновского (λ = 0,01 нм), т. е. диапазон, в котором наиболее длинные волны в 6000 раз больше самых коротких. Для видимого света это соотношение равно ~ 2. Соответственно, столь же велико количество явлений природы, физические проявления которых находятся в этой спектральной области.Структуры представляют собой искусственные одномерные кристаллы из пленок нанометровой толщины, и кроме возможности их использовать для управления излучением в зависимости от материалов слоев (диэлектрик, полупроводник, металл, сверхпроводник), они могут быть интересны и для других физических приложений. Так, если одним из материалов многослойныхнаноструктур служит сверхпроводник, то это система множественных последовательно включенных совершенно идентичных джозефсоновских переходов. Если металл чередуется с полупроводником — это система последовательно включенных диодов Шоттки.В наиболее коротковолновой части диапазона 0,01—0,02 нм рентгеновские зеркала позволяют фокусировать излучение синхротронов или рентгеновских трубок на исследуемые объекты или формировать параллельные пучки. В частности, их применение увеличивает эффективность рентгеновских трубок в 30—100 раз, что делает возможным заменить синхротронное излучение в ряде биологических, структурных и материаловедческих исследований. Приблизительно в этом же диапазоне лежит излучение высокотемпературной плазмы (лазерной и ТОКАМАКов). Здесь зеркала нашли применение как дисперсионные элементы для спектральных исследований.В диапазоне 0,6—6 нм лежит характеристическое излучение легких элементов от бора до фосфора. Здесь рентгеновские зеркала также используются для исследования спектров в приборах элементного анализа материалов.Рентгеновская многослойная оптика широко применяется для формирования фильтрации и управления поляризацией в синхротронных источниках. В области 10—60 нм лежат линии излучения солнечной плазмы. Объективы космических телескопов из рентгеновских зеркал и сейчас находятся на орбите и регулярно передают на Землю изображение Солнца на линиях Fe IX—Fe XI (17,5 нм) и Не II (30,4 нм).Особое место занимает применение многослойных зеркал в технологиях микроэлектроники: это переход на длину волны более чем в 10 раз короче (от 157 нм к 13 нм) в литографии — процессе, обеспечивающем получение рисунка полупроводниковых приборов и интегральных схем. Именно длина волны излучения, используемого для получения рисунка, отвечает за размеры его минимальных элементов. До сих пор изменение длины волны излучения от поколения к поколению литографических установок не превышало 25 %. Одновременно в 10 раз повышаются требования к точности изготовления всех элементов оптики и механизмам настройки и экспонирования. Фактически это означает переход всех обрабатывающих технологий на атомарную точность.

Наноматериалы приобретают новые свойства, связанные как квантовым ограничением длины пробега носителей, так и организацией нанокластеров в нанокристаллы. В качестве примера наноматериалов, приобретающих новые свойства, приведем пористый кремний и фотонные нанокристаллы.Пористый кремний представляет собой пример появления новых оптических свойств, связанных с квантовым ограничением [181]. Он представляет из себя материал, состоящий из изогнутых кремниевых нитей нанометрового диаметра. Для кристаллического кремния радиационные переходы между валентной зоной и зоной проводимости формально запрещены по условиям симметрии. Переходы, однако, происходят, но только с участием фононов, и поэтому скорость радиационных переходов мала. Это является причиной того, что кремний не используется для генерации оптических сигналов.В пористом кремнии наблюдается интенсивная фотолюминесценция, что вначале связывалось с возможным нарушением правила отбора в наносистеме, которая не удовлетворяет трансляционной симметрии. Квантовые ограничения действительно играют основную роль в появлении фотолюминесценции путем изменения соотношения интенсивности радиационных и не радиационных переходов. Интенсивность радиационных переходов несколько возрастает, но, главным образом, уменьшается интенсивность нерадиационных переходов, в частности, резко убывает вероятность трехчастичных Оже-процессов, связанных с испусканием электронов после поглощения светового излучения, по сравнению с кристаллическим кремнием.Фотонные кристаллы образуются из нанокластеров с размерами, сравни-мыми с длиной волны фотонов. Для видимого диапазона света это сотни нано-метров. Благодаря этому, для таких наноструктур наблюдаются дифракцион-ные процессы и выполняются условия Брэгга, подобно рассеянию рентгенов-ских лучей на атомной кристаллической решетке. Это приводит к возникно-вению когерентных эффектов при рассеянии и поглощении света, весьма чувствительных к энергии фотонов и направлению их распространения.Так, фотонные кристаллы имеют периодически меняющийся коэффициент отражения, что позволяет изменять оптические свойства материалов. Одномерные наноструктуры используются как интерференционные фильтры, однако большой интерес представляют трехмерные нанокристаллы. Для таких наносистем было получено существование щелей фотонных состояний в энергетических и дисперсионных спектрах подобно запрещенным зонам в энергетических и дисперсионных спектрах электронов в атомных кристаллах. Это предсказывает существование фотонной щели с частотами, при которых фотон не может распространяться внутрь кристалла и происходит его упругое отражение от нанокристаллического слоя. Такие возможности позволяют создавать наноматериалы с изменяющимися оптическими свойствами.
Создание фотонных кристаллов с фотонной щелью включает разнообразные приемы синтеза. Один из таких приемов состоит в использовании свойства сфер субмикронного размера произвольно организовываться в гранецентрированную решетку. В результате получается наноматериал — синтетический опал, включающий монодисперсные сферы окиси кремния. Однако такой нанокристалл не обладает устойчивой фотонной щелью, которая легко разрушается различного рода дефектами и несовершенством нанокристалла. Такой синтетический опал далее используется как матрица для получения полупроводникового материала путем его фильтрации в поры нанокрасталлического опала (рис. 13). Удаление матрицы опала позволяет получать нанокристалли-ческий обращенный опал, в котором кремний включает упорядоченную структуру пустот [182].
Было рассчитано, что если полупроводник обладает достаточно высоким коэффициентом отражения >2,85, то такая структура будет иметь фотонную щель, что экспериментально было обнаружено для фотонного кристалла, сделанного из кремния [183].В этой области большой интерес вызывает создание фотонных кристаллов, которые способны к интенсивному испусканию света, например на основе GaS, InS, GaP, или созданию упорядоченных полостей на основе алмазной структуры, которая по расчетам может иметь еще большую фотонную щель и меньше зависеть от дефектов и разупорядоченности.

Органические материалы в последнее время интенсивно вовлекаются в нанотехнологии и как неотъемлемые участники технологического процесса (например, в нанолитографии), и как самостоятельные объекты и устройства — в так называемой молекулярной электронике.
Многообразие органического мира хорошо известно (около 2 млн синтезированных соединений, и это количество непрерывно растет) — от «полунеорганических» комплексов (углеродные кластеры, металлоорганика) до биологических объектов (ДНК, гены). С точки зрения материалов для нанотехнологий и молекулярной электроники условно можно выделить три основных класса: полимеры, молекулярные ансамбли (molecular assemblies, self-aggregated systems) и единичные молекулы: последние называются также «умные» или «функциональные» молекулы (smart molecules).
Первый класс изучается наиболее давно и по общей совокупности работ, наверное, наиболее интенсивно. Кроме того, диэлектрические, оптические и люминесцентные свойства различных поли- и олигомеров уже широко используют в технике и электронике, они стоят ближе всего к рынку и экономическому эффекту.
Второй класс — молекулярные ансамбли нанометровых размеров — изучается сравнительно недавно. К ним относятся, например, агрегаты на основе порфиринов (в том числе хлорофилла) и других амфифильных молекул, получаемые из растворов. Супрамолекулярная (то есть надмолекулярная, иерархическая) организация сложна и интересна, ее исследование и связь с (фото-) электрическими свойствами проливает свет на биологические и природные процессы (клеточный транспорт, фотосинтез). Обнаружена чувствительность, а главное — уникальная избирательность таких систем к внешним воздействиям (свет, атмосфера, вибрация), что позволяет использовать их в различных сенсорах, в том числе со смешанной электронно-ионной проводимостью. Исследуются наноразмерные молекулярные стержни и проволоки (molecular rods and wires), в том числе в качестве интерфейса между неорганическими материалами (например, двумя металлическими электродами). Предполагается, что со временем будет происходить интегрирование с классической приборной базой.
Вообще системы, построенные в основном на ван-дер-ваальсовых или водородных связях, представляют собой очень перспективный с точки зрения дизайна твердого тела объект с двумя уровнями свободы: внутримолекулярная структура, которая может быть модифицирована (изменена при синтезе) и которая ответственна, например, за поглощение или испускание света; межмолекулярная структура, которая может быть изменена при росте кристалла (пленки, эпитаксиального слоя) и которая ответственна за фазовые явления, транспорт носителей заряда, магнитные свойства. В качестве примера: фталоцианин меди и периферийно-фторированный фталоцианин меди структурно изоморфны, однако представляют собой полупроводники р- и n-типа соответственно. Полностью органические выпрямляющие переходы на основе вакуумно-осажденных слоев интенсивно исследуются в настоящее время. Вместе с тем, допирование пленок фталоцианина сильным акцептором (например, йодом) изменяет фазовую структуру вплоть до получения квазиодномерной металлической проводимости.
Важную группу составляют также самоорганизующиеся монослои (self-assembled monolayers, SAM’s) на основе органических молекул или цепочек различного строения, которые исследуют как перспективные передающие материалы при литографии, так и для изучения электропереноса вдоль контура сопряжения молекулы. Здесь уже начинается третий класс.
Третий класс или способ применения органических материалов в нанотехнологиях самый молодой. Это то, что в западных конкурсах называется emergent или futuristic technologies (внезапно возникающие или футуристические технологии). Если жидкокристаллические дисплеи, технологии CD-R, фотопреобразователи, сенсоры и другие устройства на органических материалах хорошо известны и постепенно (хотя и медленно — из-за торможения со стороны уже широко инвестированного и раскрученного «силиконового» и GaAs-ro приоритета) приходят на рынок, то одномолекулярные устройства в реальном производстве отсутствуют. Более того, если макроскопические свойства классических органических твердых тел (молекулярных кристаллов) имеют удовлетворительное теоретическое описание, то процессы, ожидаемые в одномолекулярных устройствах, видятся гораздо менее отчетливо. Самый упрощенный подход: берем некую молекулу, которая представляет собой хорошо организованную квантовую систему, делаем к ней электроды и получаем, например, диод. Тут сразу возникает много новых вопросов. В частности, граница металл/молекулярный полупроводник даже на макроуровне весьма неопределен.
Тем не менее истинно «наноразмерные» эффекты ожидаются именно в этом классе. Конструируются молекулярные наномашины и наномоторы (роторы), динамические молекулярные переключатели, транспортировщики энергии, устройства распознавания, хранения информации. Для исследования инжекции носителей и туннельного тока в отдельных молекулах совершенствуются методы зондовой микроскопии.Следует учитывать, что в числе главных достоинств (если не самых главных) органики находятся дешевизна и доступность. Изощренный синтез новых соединений делает их едва ли не дороже высокочистых неорганических веществ, поэтому наибольшие практические перспективы имеют исследование и модификация (оптимизация) широко распространенных и изученных (более или менее) соединений с высокой стабильностью и способностью интегрироваться в разработанные технологические процессы. Из наиболее известных — это фталоцианины, фуллерены, политиофены и полиарены.

Графит, алмаз и карбин в течение долгого времени считались основными аллотронными состояниями углерода. Их применяли во многих отраслях промышленности и техники, в том числе в микро- и оптоэлектронике. За 10 лет до конца XX века были обнаружены сначала в космосе, а потом получены в лаборатории новые молекулярные формы углерода — фуллерены и фуллереноподобные индивидуальные вещества и материалы. В настоящее время фуллереновые материалы начинают широко применять в промышлен-ности: от микро- и наноэлектроники до эффективных медицинских препаратов.К фуллереновым материалам относятся следующие:
Фуллерены. Они образуют молекулярно-кристаллические твердые тела, часто вследствие большого размера и высокой симметрии своих молекул — пластические кристаллы без температуры плавления. Они образованы молекулами С2n , имеющими форму либо сфер, либо эллипсов, хотя возможны их другие комбинации (полусферы с цилиндрами из углерода). Возможны многослойные сферы или эллипсы («оолитовые» или «луковичные» структуры). Размер молекул главного представителя фуллеренов С60 составляет 1 нм, и в растворе молекулы обладают свойствами броуновской частицы.
Углеродные нанотрубки. Они образованы из свернутых по различным направлениям графитовых плоскостей и закрыты на концах сетчатыми углеродными полусферами. Такие «графитовые» нанотрубки могут быть однослойными и многослойными. Последние могут быть переведены окислением и травлением в однослойные. Углеродные нанотрубки могут иметь разветвления и изгибы. В этом случае они теряют исходную «графитовую» структуру и не называются «графитовыми». Однослойные нанотрубки имеют размеры от 1 до 10 нм в диаметре и длину 100—1000 нм и более, а многослойные имеют диаметры и длину в 10—100 раз больше. Твердые тела могут быть образованы из жгутов нанотрубок или коллинеарных (но более коротких) образований.
Наполненные фуллерены (эндопроизводные). Наполнением могут быть молекулы инертных или других газов, небольшие органические и неорганические молекулы, атомы металлов (щелочных, щелочноземельных, лантанидов и др.). Несмотря на трудности получения и малый выход таких производных, присущие им свойства заставляют исследовать их синтез и возможные применения. Эти производные в большинстве своем имеют крайне низкие потенциалы ионизации по сравнению с металлами, и по-видимому, обладают металлическими свойствами.
Наполненные углеродные нанотрубки. Помимо перечисленного выше для наполнения могут быть использованы фуллерены меньшего диаметра.
Неорганические нанотрубки (MoS2, WSe2 и др.). Патентная литература и применения фуллереноподобных материалов чрезвычайно разнообразны. Фуллереноподобные материалы обладают рядом замечательных характеристик, включая химическую стойкость, высокую прочность, жесткость, ударную вязкость, теплопроводность и электропроводность. В зависимости от тонких особенностей молекулярной симметрии фуллерены и нанотрубки могут быть диэлектриками, полупроводниками, обладать металлической проводимостью и высокотемпературной сверхпроводимостью. Эти свойства в сочетании с наномасштабной геометрией делают их почти идеальными — возможно даже уникальными — материалами для изготовления электрических проводов, сверхпроводящих соединений или целых устройств, которые с полным основанием можно назвать изделиями молекулярной электроники. Химической сборке элементов различных схем благоприятствуют свойства фуллерена, который может образовывать ионы от +6 до -6 и в различных матрицах — связи с донорами, акцепторами, свободными радикалами и ионами. Фуллерены могут также использоваться при создании средств молекулярной оптоэлектроники для фемтосекундной оптоволоконной передачи информации. Полимеризация фуллеренов при электронно-лучевом или ионизирующем воздействии дает возможность получать резисты нового поколения.
Углеродные нанотрубки используются в качестве игольчатых щупов сканирующих зондовых микроскопов и в дисплеях с полевой эмиссией, в высокопрочных композиционных материалах, электронных устройствах со схемами из коротких нанотрубок, подвергнутых манипулированию и сборке. Молекулярный характер фуллереновых материалов позволяет разработать химическую стратегию сборки этих элементов в пригодные для использования структуры, материалы и, возможно, даже молекулярные электронные устройства.

Углеродные нанотрубки (УНТ) являются наноструктурами с широким потенциалом применения. Впервые они были получены в 1991 г. Ижимой [184].Кроме фундаментальных исследований УНТ оказались перспективными материалами для получения новых наноматериалов и наноустройств. Это прежде всего возможность регулировать проводимость нанотрубки путем изменения ее структуры. Второе важное свойство — это высокая напряженность электронного поля, порождаемая малым нанометровым диаметром нанотрубки по отношению к среднему приложенному напряжению. Это приводит к аномально высокому току эмиссии при относительно малых напряжениях и лежит в основе создания холодных катодов и эмиттеров на основе УНТ. Поскольку УНТ представляют собой полости, они могут использоваться не только как адсорбенты, но и как хранилища газообразных или жидких веществ, в частности для хранения водорода.
УНТ образуются в результате химических превращений углерода при высоких температурах. Можно выделить три основных способа их получения: электродуговое распыление графита, абляция графита с помощью лазерного или солнечного облучения и каталитическое разложение углеводородов в процессах химической газофазной эпитаксии и СВЧ плазменного эпитаксиального осаждением из газовой фазы [185].
Метод электродугового распыления состоит в использовании дугового разряда с графитовыми электродами, горящими в атмосфере инертного газа. К электродам из углерода диаметром 5-20 мм, разнесенным на расстояние около 1 мм, в потоке гелия при давлении 66500 Па прикладывается напряжение 20 — 25 В. Нанотрубки образуются на отрицательном электроде. Для получения однослойных нанотрубок в центральную область положительного электрода добавляют небольшие количества кобальта, никеля или железа в качестве катализаторов. Отсутствие катализатора приводит к получению многослойных или вложенных нанотрубок, то есть нанотрубка внутри нанотрубки, как показано на рис. 14, с внутренним диаметром от 1 до 3 нм и внешним диаметром от 2 до 25 нм. Применение катализатора, например Fe, Co, Ni, Cr, Pd и т. д., приводит к образованию однослойных УНТ с диаметром от 0,79 нм и длиной порядка 1 мкм.
Второй основной способ получения УНТ состоит в испарении лазером мишени из графита нагретой до 1200°С в атмосфере инертного газа. Графитовая мишень содержит небольшие количества кобальта и никеля, выступающие в качестве каталитических зародышей образования нанотрубок. Здесь опять применение металлических катализаторов ведет к изменению характера синтеза и переходу от многослойных трубок к однослойным, при этом размеры УНТ определяются длительностью лазерного импульса и его интенсивностью. Таким методом можно получить трубки диаметром 10 — 20 нм и длиной 100 микрон.
Наибольшие достижения в получении УНТ получены с помощью каталитического разложения углеводородов на поверхности металлического катализатора. Этот метод подобен CVD методу получения тонких плёнок. Катализатор представляет из себя, например, высокодисперсный порошок металлического железа при Т = 700° С, который помещен в тигель внутри трубки, через которую пропускается смесь, например; С2Н2:N2 в соотношении 1:10. В результате на поверхности катализатора образуются различного рода УНТ и металлические нанокластеры внутри многослойной графитовой оболочки. Однако наиболее высокая степень однородности УНТ получается при использовании пористой подложки с высокой степенью однородности пор, которые заполнены нанокластерами металлического катализатора. В этом случае диаметр УНТ будет совпадать с размером кластера и размером нанопоры. Если поры обладают достаточной глубиной и поверхностной плотностью, то нанотрубки образуются перпендикулярно к поверхности и обладают высокой степенью однородности. Размеры УНТ и ее структура определяются температурным режимом процесса, составом газовой фазы, но, главным образом, составом и размером нанокластеров катализатора.
Схема процесса плазменного эпитаксиального осаждения из газовой фазы нанотрубок состоит из следующих этапов [186]: 1) в камеру реактора подают технологический газ (метан, водород); 2) через кварцевое окно зажигают плазму путем ввода микроволнового излучения в камеру реактора, и 3) к подложке, на которую напылен металл-катализатор для роста углеродных нанотрубок, прикладывают отрицательное напряжение смещения.
Механизм роста нанотрубок до сих пор неясен. Так как для роста однослойных трубок необходим металлический катализатор, механизм должен объяснять роль атомов кобальта или никеля. Одно из предложений, называемое «механизмом скутера», состоит в том, что атомы металлического катализатора присоединяются к оборванным связям на открытом конце трубки и обегая ее по краю, способствуют захвату атомов углерода из паровой фазы и их встраиванию в стенку трубки.В другой модели роста углеродных нанотрубок активные радикалы углерода (либо атомы, либо ионы), диссоциированные из газообразного метана в металл-катализатор на подложке, растворяются в этом металле и прорастают вверх, поднимая при этом мельчайшие частицы металла-катализатора.В случае одностенной нанотрубки на ее концах можно обнаружить металлические частицы, что свидетельствует в пользу каталитической роли атомов металла в формировании структуры трубки.Как правило, имеет место селективный рост углеродных нанотрубок на металле-катализаторе, нанесенном на подложку. Учитывая эту особенность селективного роста, можно использовать нанотрубки в полупроводниках, где необходимо контролировать изготовление шаблона с размерами порядка нанометров. Обычно при синтезе получается смесь нанотрубок разных типов с различным характером и величиной электропроводности, причем в зависимости от диаметра и хиральности две трети из них имеют полупроводящие свойства, и одна треть — металлические. Металлические трубки обычно имеют кресельную структуру. На рис. 15 приведены способы организации нанотрубок в зависимости от хиральности и угла сворачивания [184]. Однослойная нанотрубка может иметь диаметр 2 нм и длину 100 микрон, что делает ее квазиодномерной структурой, способной служить нанопроволокой.
Группа из IBM разработала метод отделения полупроводящих нанотрубок от металлических. Для разделения смешанные пучки нанотрубок осаждают на кремниевую подложку, а затем на эти пучки напыляют металлические электроды. Используя подложку как электрод, на него подают небольшое напряжение смещения, запирающее полупроводниковые трубки и эффективно превращающее их в изоляторы. Затем между металлическими электродами прикладывается высокое напряжение, создающее большой ток в металлических нанотрубках, что приводит к их испарению, после чего на подложке остаются только полупроводниковые нанотрубки.

На современном этапе исследований возможны два применения углеродных нанотрубок в полупроводниковых приборах. Одно из них состоит в использовании углеродных нанотрубок в качестве канала затвора в полевых транзисторах, учитывая, что характеристики, подобные характеристикам полупроводника, могут быть получены путем контроля вектора хиральности. Другое применение заключается в использовании углеродных нанотрубок в качестве межслойных контактов или многослойных пленок, принимая во внимание такие преимущества нанотрубок, как высокая плотность электрического тока, высокая электропроводность, высокая теплопроводность и высокое аспектное отношение. В таблице 3 приведены характеристики УНТ в сравнении с обычными материалами. Как видно из этой таблицы, плотность тока в нанотрубке выше, чем в кремнии и меди примерно в 2 раза. Также подвижность выше, чем в кремнии. Ввиду того, что теплопроводность углеродной нанотрубки в 10-20 раз выше, чем у кремния и меди и ее упругость очень высока, можно говорить о том, что углеродная нанотрубка является наилучшим материалом для межслойных контактов.
Табл. 3.
Углеродные нанотрубки
Кремний (транзистор)
Медь(разводка)
Плотность тока
(А/см2)
1 х 109
1 х 107
1 х 107
Скорость переноса электронов (см/с)
2т8хЮ9
1 х 107
Удельное сопротив-ление (Ом х см)
4 х 10~4 2х 106
1,67 х 10"6
Тепропроводность (Вт/мК)
3000 Ч- 5500
150
398
Технология процесса
Самоорганизация
Литография
Литография
На рис. 16 приведена зависимость ширины щели полупроводящих нанотрубок от их наружного диаметра. Только одностенная углеродная нанотрубка демонстрирует характеристики, похожие на характеристики полупроводника. Можно видеть, что одностенная УНТ может иметь разную ширину запрещенной зоны: 1,5 эВ, как у арсенида галлия, приблизительно 1 эВ, как у кремния или 0,7эВ, как у германия, в зависимости от различий в диаметре. Однако, из вышеприведенных значений становится ясно, что ширина запрещенной зоны изменяется уже при возрастании диаметра нанотрубки всего на 0,1 нм, что вызывает необходимость жесткого контроля диаметра одностенной углеродной нанотрубки с точностью приблизительно 0,1 нм для того, чтобы получить желаемую ширину запрещенной зоны. Следует отметить, что большое внимание должно уделяться не только контролю числа стенок нанотрубки и наружного диаметра. Имеется и множество других параметров: типа хиральности, длины, направления, положения роста и других параметров, контролирующих характеристики углеродных нанотрубок. Поэтому для того, чтобы УНТ можно было применять в технологии полупроводников, необходимо тщательно контролировать каждый из этих параметров.
Для того, чтобы контролировать наружный диаметр углеродной нанотрубки, необходимо также иметь оборудование для изменения формы и толщины каталитической металлической поверхности, либо использовать мельчайшие частицы с заранее заданным диаметром. Необходимо иметь возможность выращивания точно заданного количества углеродных нанотрубок в точно заданном месте, и с точно заданными длиной и диаметром.Таким образом, основными требованиями к технологии выращивания нанотрубок являются: 1- контроль положения; 2- контроль плотности; 3 — контроль направления роста; 4- контроль хиральности; 5 — рост при низкой температуре.Технологии изготовления полупроводниковых приборов с использованием УНТ должны обеспечивать: 1 — сопротивление контакта; 2 – травление; 3 – легирование; 4 — пассивацию и т.д.Что касается других применений нанотрубок, то, например, по сообщению фирмы IBM, углеродные нанотрубки обладают свойством электролюминесценции, что предполагает использование углеродных нанотрубок в качестве оптических элементов.

Современное развитие физики и технологии твердотельных наноструктур, проявляющееся в непрерывном переходе топологии элементов электронной техники от субмикронных размеров к нанометровой геометрии потребовало разработки новых и усовершенствования существующих диагностических методов, а также создания новых образцов оборудования для анализа свойств и процессов в низкоразмерных системах, в наноматериалах и в искусственно создаваемых наноструктурах. В этом плане особое внимание уделяется созданию и применению взаимодополняющих высокоразрешающих методов практической диагностики и характеризации наноструктур, обеспечивающих получение наиболее полной информации об основных физических, физико-химических и геометрических параметрах наноструктур и протекающих в них процессов.В настоящее время существует огромное число методов диагностики, еще больше методик исследования физических и физико-химических параметров и характеристик твердотельных и молекулярных структур. Вместе с тем, получение наноструктур, низкоразмерных систем и новых наноструктурированных материалов с заданными свойствами, предназначенных для применения в современной электронике, ставит и новые диагностические задачи. Для решения современных задач диагностики наноструктур требуется адаптация к этим задачам традиционных методов (оборудования), а также развитие новых, прежде всего локальных (до масштабов 0,1 нм) методов исследования и анализа свойств и процессов, присущих объектам нанометровой геометрии и системам пониженной размерности.
Методы нанодиагностики должны быть по возможности неразрушающими и давать информацию не только о структурных свойствах нанообъектов, но и об их электронных свойствах с атомным разрешением. Для разработки нанотехнологий решающей оказывается также возможность контролировать атомные и электронные процессы in situ с высоким временным разрешением, в идеале до времени, которое равно или меньше периода атомных колебаний (до 10-13 с и менее). Необходима также диагностика электронных, оптических, магнитных, механических и иных свойств нанообъектов на «наноскопическом» уровне. Невозможность полного удовлетворения этих требований приводит к использованию комплекса методов диагностики нанообъектов, среди которых необходимо выделить следующие основные группы методов:
электронная микроскопия высокого разрешения, которая исторически явилась первым методом, реально обеспечивающим визуализацию структуры объектов с атомным разрешением. К этому методу примыкают различные модификации электронной микроскопии, обеспечивающие проведение химического анализа нанообъектов, исследования in situ, поверхностно-чувствительные методы, такие как отражательная электронная микроскопия, микроскопия медленных электронов и другие. Во многих случаях электронная микроскопия высокого разрешения является единственным источником получения информации о внутренней структуре и структуре границ раздела таких нанообъектов,как квантовые ямы и квантовые точки;
методы сканирующей электронной микроскопии, которые вплотную приближаются по разрешению к атомному разрешению, сохраняя возможность получения информации без существенного (разрушающего)воздействия на исследуемые объекты с получением разнообразной информации о химическом составе нанообъектов, их электрических (метод наведенного тока), оптических (катодолюминесценция) и других свойствах. Для получения информации об объеме нанообъектов развиты методы электронной томографии;
сканирующая туннельная микроскопия, в частности, сканирующая туннельная микроскопия в режиме локальной электронной спектроскопии, которая используется для исследования электронной структуры углеродных нанотрубок, являющаяся поверхностно-чувствительным методом визуализации атомной структуры твердых тел; проведение спектроскопических исследований с атомным разрешением вместе с привлечением возможностей для in situ экспериментов при повышенных и пониженных температурах, использование других методов зондовой микроскопии и возможности манипулирования на уровне отдельных атомов делают эти методы важнейшим инструментом для нанотехнологий и нанодиагностики;
рентгендифракционные методы, особенно с использованием высокой светимости синхротронных источников, они дают уникальную информацию об атомной структуре нанообъектов без их разрушения;
методы электронной спектроскопии для химического анализа, оже-электронной спектроскопии, методы фотоэлектронной спектроскопии, романовской и ИК-спектроскопии, метод фотолюминесценции, которые активно развиваются с повышением разрешающей способности, что делает эти методы весьма полезными при диагностике нанообъектов.
Дальнейшее развитие всевозможных методов диагностики (в частности, диагностики, встроенной в технологию), учитывающих специфику нанообъектов и их характерные размеры, является неотъемлемой частью развития высоких технологий получения и анализа свойств наноструктур нового поколения. При этом формирование комплексных методов практической диагностики диктуется как технологическими задачами получения наноструктур и создания на их базе следующего поколения электронных и оптических устройств (транзисторов, лазеров и др.), так и их специфическими физическими, физико-химическими и топологическими свойствами, часто не укладывающимися в рамки стандартных представлений о свойствах вещества.

Оцените статью
Добавить комментарий