Б. И. Губанов Триумф и трагедия «Энергии». Размышления главного конструктора, Н. Новгород, изд. Ниэр, 1998г Надо ли проводить огневые предполетные испытания?




Скачать 0.63 Mb.
Название Б. И. Губанов Триумф и трагедия «Энергии». Размышления главного конструктора, Н. Новгород, изд. Ниэр, 1998г Надо ли проводить огневые предполетные испытания?
страница 3/5
Дата публикации 13.08.2016
Размер 0.63 Mb.
Тип Документы
edushk.ru > Астрономия > Документы
1   2   3   4   5

^ Универсальный комплекс стенд-старт
В период проработки создания ракеты-носителя "Энергия", имеющей в своем составе ракетные блоки многократного использования, была определена и заложена в тактико-технические требования необходимость обеспечения проведения огневых стендовых и технологических испытаний блока второй ступени, огневых стендовых испытаний ракеты-носителя и огневых технологических испытаний модульной части блока первой ступени. Эти требования обусловили необходимость создания стендового комплекса с размещением его на территории космодрома Байконур в районе сборки и пусков "Энергии".

Универсальный комплекс стенд-старт расположен на двух площадках. На одной площадке - основные сооружения технические системы и технологическое оборудование, стартовое сооружение с пусковым устройством, хранилища компонентов топлива и сжатых газов, системы заправки, газоснабжения, термостатирования, газового контроля, пожарной защиты. На другой площадке расположен главный командный пункт управления, а также вспомогательные сооружения и компрессорная станция, котельная, склады и ряд других систем.

Обе площадки связаны между собой железной и шоссейной дорогами, эстакадой с электрическими, пневматическими и гидравлическими коммуникациями. С техническим комплексом ракеты-носителя стенд-старт связан железной и шоссейной дорогами, а также специальным железнодорожным путем, по которому осуществляется доставка ракеты на универсальный комплекс стенд-старт транспортно-установочным агрегатом.

Универсальный комплекс стенд-старт включает в себя 203 строительных здания и сооружения, 213 технических систем и 57 технологических систем и агрегатов. Стоимость разработки и создания стенда-старта на конец 1987 года составляла 592 миллиона рублей, из которых 304 миллиона - стоимость технологического оборудования, 288 -стоимость капитальных вложений.

Универсальный комплекс стенд-старт - это уникальное сооружение, не имеющее аналогов в ранее созданной отечественной экспериментальной и стендовой базе для испытаний ракетной техники.

Проведенные исследования показали целесообразность создания стартового сооружения с односкатным пламяотражательным лотком большого (примерно 40 м) заглубления относительно нулевой отметки, защищенным в зоне огневого воздействия стальными и чугунными плитами. Кроме того, была определена необходимость создания водяной системы охлаждения для защиты лотка и стендовой пусковой установки от перегрева при огневых испытаниях блоков ступеней и ракеты в целом.

Водяная система охлаждения обеспечивает тепловую защиту стенда путем подачи охлаждающей воды непосредственно в высокотемпературные струи ракетных двигателей, где вода, испаряясь, отбирает тепло и снижает температуру газа, натекающего на поверхность лотка. Подача воды осуществляется с помощью насадок, размещаемых непосредственно под соплами ракетных двигателей, и с помощью жиклеров, устанавливаемых вне газовых струй.

Такая схема подачи воды позволяет снижать температуру газовой струи до допустимых пределов до соприкосновения ее с элементами стартового сооружения, что значительно упрощает защиту лотка по сравнению с другими способами, например, с подачей воды через отверстия в защищаемых поверхностях, и обеспечивает возможность быстрой настройки системы под испытания различных ракетных блоков, в том числе и с качаниями сопел ракетных двигателей. В системе предусмотрена также защита стендовой пусковой установки от лучистых тепловых потоков путем создания водяной пленки на нагреваемых поверхностях. Подача воды в струи ракетных двигателей осуществляется под давлением 4 атм. с расходом 18 м3/с. Запас воды около 18 тыс. м3 в трех емкостях.

Система охлаждения лотка включается за 70 с до команды "Главная" и перекрывается по команде выключения двигателя РД-0120 в течение одной минуты.

Как показали стендовые испытания блока Ц, система охлаждения не только обеспечивает охлаждение истекающей струи до пределов, гарантирующих сохранность лотка и стендовой пусковой установки, но и значительно снижает ударно-волновые и акустические нагрузки, действующие в момент запуска и работы двигателей. Это явилось подтверждением необходимости создания системы подачи воды на стартовом комплексе к началу летных испытаний ракеты.

Система подачи воды на стартовом комплексе существенно отличается от системы стенда-старта. Это связано с тем, что система на старте внедрялась позднее и на почти готовом старте. Запас воды всего 700 м3. Вода подается импульсивным вытеснением из емкостей по трем уровням: первый уровень подачи включается за 10 с до команды "Главная" с расходом 0,6 м3/с; второй включается за 2,5 с до команды "Главная"; третий (верхний), с расходом до 18 м3/с, включается через 4 с после срабатывания "Контакт подъема". Выключается система через 10 с после начала движения ракеты.

Главной особенностью системы управления универсального комплекса стенд-старт с учетом размещенной на этом комплексе автоматизированной системы управления универсальным комплексом стенд-старт (АСУ УКСС), входящей в состав автоматической системы управления подготовки пусков, является широкое применение в составе этих систем вычислительной техники. Это позволило перевести процессы подготовки и заправки ракеты в автоматический режим.

Одновременно с этим изменился процесс подготовки документации для испытаний ракет. Вместо традиционных инструкций на заправку выпускается закон управления, в котором представляется точная циклограмма выдачи команд и получения сигналов, необходимых при заправке, и который затем переводится на магнитную ленту носителя закона управления, закладываемого в автоматизированную систему управления УКСС.

Применение автоматизированных систем управления на основе использования вычислительной техники позволило проводить в автоматическом режиме не только прямые штатные операции, но и работы при возникновении предусмотренных заранее нештатных ситуаций, предусмотренных в законе управления. Эти системы позволяют при необходимости использовать и ручное управление.

Принятие решения о пуске первой ракеты-носителя "Энергия" - 6СЛ - со стенда-старта потребовало превращения стенда в старт не в конце стендовой отработки ракеты на нем, как предусматривалось техническим заданием на стенд, а в самом начале - универсальность стенда потребовалась практически сразу. При этом необходимо было дооборудовать системы и агрегаты для обеспечения отстыковки и отвода от ракеты наземных коммуникаций и площадок, обеспечить размещение и питание контрольно-проверочной аппаратуры макета полезного груза, обеспечить обслуживание и подвод коммуникаций к макету, усилить стендовую пусковую установку и доработать системы охлаждения лотка для обеспечения пуска ракеты.

Это дооборудование было реализовано за короткий срок - с декабря 1986 до 10 февраля 1987 г. В большой степени реализации этой задачи помогло принятие решения в феврале 1986 г. о доработке стенда-старта с целью расширения его эксплуатационных возможностей. Было изготовлено оборудование, необходимое для доработки стенда под старт, в том числе была поставлена задача дооснащения наземной аппаратуры системы управления, доработки заправочно-дренажной мачты и расположенных на ней систем для отстыковки и отвода наземных коммуникаций и площадок в режиме пуска ракеты, создания устройств для подвода коммуникаций к макету полезного груза.

В соответствии с техническим заданием стенд-старт создавался с учетом обеспечения возможности переоборудования его при необходимости под перспективные тяжелые ракеты на базе ракеты-носителя "Энергия" с суммарной тягой двигателей до 4,5 тыс. т. Исходя из этого требования, разрабатывались основные элементы универсального комплекса стенд-старт и, прежде всего, стартовое сооружение.

Проведенный анализ возможности использования универсального комплекса стенд-старт для всех работ с ракетой типа "Вулкан" показал, что газодинамическая схема лотка позволяет испытывать и пускать эту мощную ракету со стартового сооружения стенд-старта. Эта возможность отражена в техническом проекте многоразовой космической системы с указанием необходимости снижения средствами ракеты тротилового эквивалента при взрыве ракеты и обеспечения движения ракеты при пуске, исключающих соударение с имеющимися высотными сооружениями.

^ Динамика старта

Движение ракеты при старте называем начальным участком движения, понимая под этим пролет ракеты вблизи элементов и сооружений стартового комплекса от момента трогания до выхода за пределы стартового комплекса, то есть до поднятия на высоту наиболее высокого сооружения стартового комплекса.

Основная задача, которая ставится перед управлением движением ракеты на начальном участке, это - обеспечение условий несоударения ракеты с наземными сооружениями и элементами стартово-стыковочного блока, служащего опорой ракеты на стартовом комплексе.

Наземными сооружениями, существенными с точки зрения обеспечения безударного движения, являются заправочно-дренажная мачта, агрегат экстренной эвакуации и молниеприемники, которые и представляют собой наиболее высокие сооружения стартового комплекса. Другие сооружения не являются важными в указанном смысле и при исследовании движения на начальном участке не учитываются.

Из элементов стартово-стыковочного блока (блока Я) наиболее существенным является колонна пневмогидросвязи.

Движение на начальном участке можно, в свою очередь, дополнительно разбить на ряд этапов.

В качестве первого этапа можно рассматривать движение ракеты непосредственно после появления тяги двигателей и до отрыва всех блоков первой ступени от стартово-стыковочного блока. Этот этап определяется характером выхода на режим двигателей и упругими свойствами ракеты и стыковочного блока. Если считать ракету симметричной, а стыковочный блок и ракету абсолютно жесткими конструкциями, то этот этап при отсутствии внешних возмущений вообще не существует. Отрыв ракеты происходит мгновенно при достижении суммарной тягой значения, равного стартовой массе ракеты. Второй этап - движение ракеты, сопровождающееся скольжением хвостового шпангоута по направляющим шпилькам, которые расположены на стартово-стыковочном блоке.

Следующий этап - движение, при котором камеры маршевых двигателей первой и второй ступеней выходят из стыковочного блока, точнее из "колодцев", в которых располагаются камеры. Этот этап характерен тем, что между камерами и стенками указанных колодцев имеется сравнительно малый зазор (в номинале 300 мм), причем при движении ракеты он уменьшается за счет вращения ракеты относительно центра масс, что обусловлено его несимметрией, и при определенных условиях без принятия специальных мер может произойти соударение. Для исключения этого недопустимого явления на определенном этапе разработки была введена так называемая система сопровождения. Эта система представляла собой гидромеханическое устройство, связывающее стартово-стыковочный блок и хвостовые отсеки блоков первой ступени таким образом, что во время движения ракеты на этапе выхода камер двигателей из блока на ракету (в местах крепления системы сопровождения) действовали силы, препятствующие соударению камер сгорания двигателей со стартовым блоком. После подъема ракеты и выхода камер из колодцев узлы связи системы сопровождения автоматически отсоединяются от ракеты.

В дальнейшем система сопровождения была исключена ввиду того, что был принят способ обеспечения безударности движения на рассматриваемом этапе, основанный на использовании управляющих органов.

И наконец последний, в определенном смысле самый сложный и ответственный этап, - свободное движение ракеты, которым необходимо управлять с помощью автомата стабилизации и органов управления. Сложность этого этапа заключается в том, что движение ракеты происходит в непосредственной близости от элементов стартового блока пневмогидросвязи и агрегатов наземных сооружений, заправочно-дренажной мачты, агрегата экстренной эвакуации. Расстояние от них до ракеты, стоящей на старте, составляет всего несколько метров. Движение ракеты на начальном участке само по себе обладает характерными особенностями, требующими решения ряда проблемных задач в областях конструирования, динамики, управления. Кроме того, сама ракета и режимы ее работы на начальном участке имеют ряд свойств и особенностей, усугубляющих трудности решения задачи о безударном движении.

Одна из особенностей - несимметричность ракеты и связанный с ней эксцентриситет равнодействующей сил тяг двигателей. В силу этого обстоятельства на ракету, даже при отсутствии каких-либо дополнительных возмущений, действует момент, разворачивающий ракету на неуправляемом участке. Вследствие этого при первом летном испытании "Энергии" к моменту включения автомата стабилизации ракета наклонилась на 3 градуса в плоскости тангажа, что было отмечено многими специалистами, даже наблюдавшими за пуском по телевизору.

Второе, очень важное обстоятельство - необходимость обеспечения безударного движения при возникновении на самой ранней стадии начального участка нештатной ситуации, связанной с нештатным отключением одного из двигателей первой ступени. В этом случае существенно усложняется задача обеспечения безударного движения. Это объясняется тем, что, во-первых, увеличивается эксцентриситет тяги примерно на порядок по сравнению со штатным случаем и, соответственно, возмущающий момент и, во-вторых, заметно уменьшается тяговооруженность. В связи с этим увеличивается время выхода ракеты из стартового блока или, иными словами, время действия возмущающего момента на неуправляемом участке.

Следующая особенность, о которой упоминалось выше, приобретающая вполне конкретное содержание в свете возможности возникновения нештатной ситуации, -близость наземных сооружений стартового комплекса. При этом следует отметить, что наиболее опасные варианты нештатных ситуаций возникают при выключении двигателей либо на блоке 20А, либо 30А, так как возникающие при этом возмущающие моменты обусловливают наклон ракеты в сторону наиболее близко расположенных сооружений - соответственно заправочно-дренажной мачты при отключении тяги на блоке 20А и агрегата экстренной эвакуации на блоке 30А. При этом возможность управления ракетой ограничена колонной пневмогидросвязи, наличие которой не позволяет немедленно после выхода из стыковочного блока начать энергичный маневр по обеспечению безударного движения.

Что же касается нештатных ситуаций, обусловленных выключением двигателей на одном из блоков 10А и 40А, то они, хотя и требуют формирования законов управления, не приобретают проблемного характера, так как "опасными" в этих случаях сооружениями являются молниеприемники, которые находятся на значительно большем расстоянии от ракеты, чем заправочно-дренажная мачта и агрегат экстренной эвакуации.

Еще одна особенность - наличие возмущающих воздействий, не связанных с нештатными ситуациями, но становящихся достаточно заметными при действии:

- наклонения ракеты ветровыми нагрузками;

- погрешности установки на ракете двигателей;

- погрешности перемещений штоков рулевых приводов;

- разбросов массово-центровочных, аэродинамических характеристик ракеты и тяг двигателей.

С учетом особенностей старта "Энергии" решались следующие задачи:

- разработка динамической модели ракеты применительно ко всем этапам начального участка движения;

- нахождение и реализация способов обеспечения безударности движения на неуправляемом этапе и формирование благоприятных кинематических параметров ракеты на момент включения автомата стабилизации;

- формирование закона управления на управляемом этапе, обеспечивающего безударное движение с учетом возможности возникновения нештатной ситуации и действия возмущающих факторов.

Все эти задачи были в принципе решены при проектных разработках, а первые летные испытания "Энергии" показали полное качественное и количественное соответствие расчетных данных применительно к штатному старту с данными летных испытаний и подтвердили правильность принятой концепции старта.

Отказ от системы сопровождения означал новый этап в решении проблемы динамики старта. Это позволило:

- упростить и облегчить систему "ракета - стартово-стыковочный блок";

- повысить надежность старта;

- получить более четкий способ управления ракетой на начальном участке за счет сокращения заневоленного участка.

Возможность обеспечения безударного движения на этапе выхода из стартового блока без системы сопровождения и формирования требуемых кинематических параметров на момент включения автомата стабилизации вытекает из того обстоятельства, что действие со стороны системы сопровождения, в принципе, может быть воспроизведено с помощью отклонения вектора тяги. Действительно, при отклонении этой силы на некоторый угол появляется поперечная составляющая, а продольная составляющая практически не изменяется при достаточно малом угле. Очевидно, если этот угол изменять во времени таким образом, чтобы поперечная составляющая тяги изменилась по такому же закону, как и сила со стороны системы сопровождения при конкретной нештатной ситуации и детерминированных возмущениях, то будет осуществлено, если пренебречь разностью по высоте точек приложения двух сравнительных сил, равной 1,5 метра, воспроизведение силы со стороны системы сопровождения, и движение ракеты будет проходить так же, как и при наличии системы сопровождения.

Однако такое воспроизведение было бы очень трудно осуществить: потребовалась бы сложная программа отклонения камер двигателей. Но, как показали исследования, такая имитация и не требуется, достаточно воспроизвести импульс силы при простейшем законе формирования поперечной составляющей тяги - за счет отклонения всех камер всех двигателей или только первой ступени по каналам тангажа и рыскания на постоянные углы, определяемые характером нештатных ситуаций.

Напомним, что приведенные рассуждения предназначались для обоснования принципиальной возможности отказа от системы сопровождения и как бы передачи ее функции на органы управления. На самом деле воспроизведение силы возмущения с их помощью со стороны системы сопровождения не является обязательным. Наоборот, этот метод является более гибким, потому что он не связан с формированием однозначного закона изменения поперечных сил и позволяет как обеспечить безударное движение на этапе выхода из стартового блока, так и сформировать кинематические параметры ракеты на момент включения автомата стабилизации. В частности, этот метод позволяет начинать управление сразу после схода со шпилек, когда ракета становится свободной.

В результате был решен комплекс научно-технических задач, составляющих проблему динамики старта:

- разработана математическая модель ракеты, описывающая ее движение на всех фазах начального участка траектории, учитывающая упругость элементов конструкции, упругость стартово-стыковочного блока, подвижность жидкого наполнения баков, а также всю совокупность действующих возмущений и разбросов характеристик ракеты. Проведен расчет параметров математической модели ракеты применительно к штатной и нештатной ситуациям;

- внедрен способ компенсации возмущений при отказах двигателей первой ступени на начальном этапе движения, позволяющий исключить применение специальных гидромеханических ограничителей поперечных движений хвостовой части ракеты в нештатных ситуациях (системы сопровождения); произведен расчет компенсирующих воздействий для ввода их в систему управления. Это мероприятие позволило упростить конструкцию, уменьшить объем экспериментальной отработки, повысить надежность, снизить материальные затраты;

- произведен расчет кинематических параметров, учитывающий все степени свободы ракеты, для использования их в качестве начальных условий на момент включения автомата стабилизации;

- предложен и реализован метод программного управления ракетой в нештатных ситуациях, обусловленных отказом двигателей первой ступени в процессе их запуска, по которому программные функции углов тангажа и рыскания определяются номером бланка, на котором произошел отказ двигателя и пространственной конфигурации сооружений стартового комплекса;

Первый пуск "Энергии" полностью подтвердил правильность разработанной концепции старта при штатном функционировании двигателей.

1   2   3   4   5

Похожие:

Б. И. Губанов Триумф и трагедия «Энергии». Размышления главного конструктора, Н. Новгород, изд. Ниэр, 1998г Надо ли проводить огневые предполетные испытания? icon Духовная специфика энергии «эфира-разума»: (размышления на духовную...
Левое и правое движение Духа: смещение «точки сборки» в сторону Хаоса Бытия или в сторону повышения Негаэнтропии мира
Б. И. Губанов Триумф и трагедия «Энергии». Размышления главного конструктора, Н. Новгород, изд. Ниэр, 1998г Надо ли проводить огневые предполетные испытания? icon Концепция Маленкова С. К. умного электроснабжения дома
Земле. Поэтому оба источника энергии (термопары и солнечные батареи) в моих идеях естественно объединились с аккумулятором энергии...
Б. И. Губанов Триумф и трагедия «Энергии». Размышления главного конструктора, Н. Новгород, изд. Ниэр, 1998г Надо ли проводить огневые предполетные испытания? icon Об утверждении правил недискриминационного доступа к услугам по передаче...
В целях содействия развитию конкуренции на рынке производства и сбыта электрической энергии, защиты прав потребителей электрической...
Б. И. Губанов Триумф и трагедия «Энергии». Размышления главного конструктора, Н. Новгород, изд. Ниэр, 1998г Надо ли проводить огневые предполетные испытания? icon Гиперактивный?
Но что делать мамам дома, до того как ребенок пошел в детский сад и попал, надо надеяться, к квалифицированным педагогам? Как мамам...
Б. И. Губанов Триумф и трагедия «Энергии». Размышления главного конструктора, Н. Новгород, изд. Ниэр, 1998г Надо ли проводить огневые предполетные испытания? icon Об исполнении бюджета главного распорядителя
Главного распорядителя, распорядителя, получателя бюджетных средств, главного администратора, администратора источников финансирования...
Б. И. Губанов Триумф и трагедия «Энергии». Размышления главного конструктора, Н. Новгород, изд. Ниэр, 1998г Надо ли проводить огневые предполетные испытания? icon Весна обновляемой энергии
Возобновляемые виды энергии, неисчерпаемые благодаря постоянному повторению природных процессов, представлены повсюду на Земле
Б. И. Губанов Триумф и трагедия «Энергии». Размышления главного конструктора, Н. Новгород, изд. Ниэр, 1998г Надо ли проводить огневые предполетные испытания? icon Программа деятельности доо «Орбита»
«Надо видеть себя в детях, чтобы помочь им стать взрослыми, надо принимать их как повторение своего детства, чтобы совершенствоваться...
Б. И. Губанов Триумф и трагедия «Энергии». Размышления главного конструктора, Н. Новгород, изд. Ниэр, 1998г Надо ли проводить огневые предполетные испытания? icon План подготовки уч-ся 11 класса к экзамену по обществознанию в форме егэ в 2013-2014 уч году
«Введение в обществознание 8- 9 Кл», под редакцией Л. Н. Боголюбова, п. 1-3, «Обществознание 10 Кл», под редакцией Л. Н. Боголюбова,...
Б. И. Губанов Триумф и трагедия «Энергии». Размышления главного конструктора, Н. Новгород, изд. Ниэр, 1998г Надо ли проводить огневые предполетные испытания? icon Theory of translation
П 78 теория перевода (с английского языка на русский и с русского языка на английский): Уч на англ яз. – Владивосток: Изд-во Дальневост...
Б. И. Губанов Триумф и трагедия «Энергии». Размышления главного конструктора, Н. Новгород, изд. Ниэр, 1998г Надо ли проводить огневые предполетные испытания? icon Введение в пермакультуру, или как мы загубили землю?
При этом, на одну калорию выращенных сельхозпродуктов приходится 10 калорий затраченной энергии сельхозмашин и энергии промышленных...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
edushk.ru
Главная страница

Разработка сайта — Веб студия Адаманов