Опорный конспект лекций Основные понятия, термины, законы, схемы Для студентов заочной и дистанционной форм обучения




Скачать 1.12 Mb.
Название Опорный конспект лекций Основные понятия, термины, законы, схемы Для студентов заочной и дистанционной форм обучения
страница 7/15
Дата публикации 22.04.2016
Размер 1.12 Mb.
Тип Конспект
edushk.ru > Биология > Конспект
1   2   3   4   5   6   7   8   9   10   ...   15
^

8. Биосфера – особая оболочка планеты


Биосфера – особая оболочка планеты, объемлющая все формы активной жизни. В более развернутом плане под биосферой понимается нижняя часть атмосферы, гидросфера и верхняя часть литосферы, включающие совокупность всех живых организмов. Исторически сложившаяся многоуровневая, саморегулирующаяся система.

Биосфера - «область жизни», пространство на поверхности земного шара, в котором распространены живые существа. Целостное учение о биосфере было создано в начале 20 века академиком В. И. Вернадским, согласно которому биосфера представляет собой одну из геологических оболочек земного шара, глобальную систему земли, в которой геохимические и энергетические превращения определяются суммарной активностью всех живых организмов – живого вещества.

Биосфера имеет определенные границы и охватывает относительно небольшой слой поверхностных оболочек нашей планеты. Каждая из геологических оболочек имеет свои специфические свойства, которые определяют не только набор форм живых организмов, обитающих в данной части биосферы, но и их основные морфофизиологические особенности. При этом атмосфера, гидросфера и литосфера предстают не только как емкости, заполненные жизнью, но как основные среды жизни, активно формирующие ее состав и биологические свойства.

Биосферу, как местообитание организмов, можно разделить на три подсферы:

- геобиосфера (верхняя часть литосферы, населенная геобионтами);

- гидробиосфера (океаны, моря и континентальные пресные воды, населенные гидробионтами);

- аэробиосфера(нижняя часть атмосферы, населенная тропобионтами, до 22-24км, где располагается озоновый слой).

Биосфера как целое образует единую экологическую систему Земли, в которой сконцентрировано живое вещество планеты – биота.

Биота – совокупность взаимосвязанных и независимых биологических видов, объединенных общей областью распространения; исторически сложившийся комплекс живых организмов. Различают биоту Земли, государства, гидросферы и т.д.

^ Некоторые особенности биосферы

1. Биосфера – закономерный продут эволюции планеты Земля.

2. Биосфера Земли – большая (глобальная) открытая система, у которой на входе – поток солнечного излучения, а на выходе – минералы (вещества), образовавшиеся в процессе жизнедеятельности организмов и выпавшие из биогеохимических циклов (биогеохимического круговорота). Например, уголь, торф, нефть, горючие сланцы и т.п.

3. Биосферу Земли можно рассматривать как кибернетическую систему, обладающую свойством саморегулирования, что обеспечивается живыми организмами. Примером может служить практически постоянный солевой состав мирового океана, хотя реки ежегодно несут в него значительное количество различных химических соединений, в том числе около 2,5 млн.т карбоната кальция.

4. Огромное внутренне разнообразие биосферы определяет её устойчивость, обеспечивающую блокирование (нейтрализацию) внешних и внутренних возмущений, вплоть до возмущений, носящих катастрофический характер.

5. Биосферу как особую динамическую систему отличает неравновесность, определяемая принципом Бауэра (принципом устойчивого неравновесия живых систем).

6. Биосфера – это не тонкая непрерывная “пленка” живого вещества планеты, а единая сложная организация, созданная сообществами дискретных организмов.

7. Оводненность биосферы – еще одна из её отличительных особенностей. В биосфере практически нет воды без жизни (исключение – воды вулканов и некоторые рассолы) и, что более понятно, жизни без воды.

8. Химические процессы в биосфере протекают или при непосредственном участии живых организмов, либо в среде, чьи физико-химические свойства в значительной мере определяются деятельностью различных организмов на протяжении длительного времени геологической истории Земли. Например, кислород атмосферы, являющийся продуктом фотосинтеза, обновляется при участии хлорофилла растений каждые 2 тысячи лет.

9. Биосфера способна к эволюции, к переходу в высшую стадию развития, называемую ноосферой – сферой разума.

^ Средний химический состав оболочек планеты

Оболочка планеты

Состав, мас. %

Атмосфера

O – 23,15 %, N – 75,52 %

Гидросфера

O – 88,8 %, H – 11,2 %

Литосфера

O – 50 %, Si – 26 %

Биосфера (биота)

O – 70 %, C – 18 %


^ Средний элементный химический состав живого вещества суши

Элемент

Содержание,

% от живой массы

Элемент

Содержание,

% от живой массы

O

70

Mg

4٠10-2

C

18

Cl

2٠10-2

H

10,5

Na

2٠10-2

Ca

5٠10-1

Fe

1٠10-2

N

3٠10-1

Al

5٠10-3

K

3٠10-1

Ba

3٠10-3

Si

2٠10-1

Sr

2٠10-3

P

7٠10-2

Mn

1٠10-3

S

5٠10-2

B

1٠10-3


^ Разведанные запасы некоторых химических элементов и их ежегодное

накопление живым веществом

Элемент

Концентрируется при фотосинтезе, т

Мировые запасы

сырья, т

Элемент

Концентрируется при фотосинтезе, т

Мировые запасы

сырья, т

C

1011

1012

Co

105

106

P

109

1010

Ni

106

107

Cr

105

108

Cu

107

108

Mn

107

108

Zn

107

107

Fe

108

1011

Mo

105

106


^ Процессы в биосфере

Специфической чертой биосферы как особой оболочки Земли является происходящий в ней круговорот веществ, регулируемый деятельностью живых организмов. Живое вещество выполняет в биосфере следующие биогеохимические функции:

– газовую (поглощает и выделяет газы);

– окислительно-восстановительную (окисляет, например, углеводы до углекислого газа и восстанавливает его до углеводов);

– концентрационную (организмы-концентраторы накапливают в своих телах и скелетах азот, фосфор, кремний, кальций, магний и другие элементы).

^ Основные функции живого вещества в биосфере

Функции

Краткая характеристика процессов

Энергетическая

Поглощение солнечной энергии при фотосинтезе, химической энергии в результате разложения энергонасыщенных веществ; передача энергии по пищевой цепи разнородного живого вещества.

Концентрационная

Избирательное накопление в ходе жизнедеятельности определенных видов вещества, используемых для построения тела организма и удаляемых из него при метаболизме.

Деструктивная

Минерализация био- и небоигенного органического вещества; разложение неживого неорганического вещества; вовлечение образовавшихся веществ в биологический круговорот.

Средообразующая

Преобразование физико-химических параметров среды.

Транспортная

Перенос вещества против силы тяжести и в горизонтальном направлении.


^ Круговорот веществ – это многократное участие веществ в процессах, протекающих в атмосфере, гидросфере и литосфере. Геологический (большой) круговорот веществ связан с образованием и разрушением различных форм рельефа в результате геологических процессов при участии энергии Солнца (горообразование, выветривание горных пород, подъем новых материков). Геологический круговорот протекает без участия живых организмов и охватывает обширные области за пределами биосферы.

Движущей силой биологического (биогеохимического или малого) круговорота веществ является деятельность живых организмов, а главным источником энергии является солнечная радиация. Он совершается в пределах биосферы, а его интенсивность определяется в первую очередь температурой окружающей среды и количеством воды (в тропиках скорость круговорота выше, чем в тундре).

Движущей силой антропогенного круговорота веществ является хозяйственная деятельность человека, которая приводит к истощению природных ресурсов и загрязнению природной среды, что обусловливает незамкнутость антропогенного круговорота (обмена) веществ.

Из всех химических элементов наиболее важными для организмов и наиболее значимыми для биосферы являются круговороты основных элементов, входящих в состав живого вещества: углерода, кислорода, азота, фосфора и серы, поскольку они являются компонентами для построения основных молекул живого вещества - углеводов, липидов, белков и нуклеиновых кислот. Эти круговороты создаются живым веществом и одновременно поддерживают жизнедеятельность самих живых организмов. В процессе фотосинтеза за год зелеными растениями потребляется 480 млрд т вещества, уходит в атмосферу 250 млрд т свободного кислорода; при этом создается 240 млрд т живого вещества, в круговорот вовлекается 1,0 млрд т азота, 260 млн т фосфора, 200 млн т серы.

За время существования биосферы свободный кислород атмосферы обновлялся не менее миллиона раз, а воды Мирового океана прошли через биогенный цикл не менее 300 раз.

Круговорот воды является одним из грандиозных процессов на поверхности земного шара. Он играет главную роль в связывании геологического и биотического круговоротов. В биосфере вода совершает большой и малый круговороты, непрерывно переходя из одного состояния в другое. Испарение воды с поверхности океана, перенос и конденсация водяного пара в атмосфере, выпадение осадков на поверхность океана или на сушу с последующим возвращением воды в океан с речным и подземным стоком образуют большой круговорот. Взаимодействуя с литосферой, атмосферой и живым веществом, круговорот воды связывает воедино все части гидросферы: океан, реки, почвенную влагу, подземные воды и атмосферную влагу.

Активность водообмена (по М.И Львовичу)

Часть гидросферы

Объем, тыс. км3

Активность

водообмена,

число лет

Океан

1 370 000

3 000

Подземные воды

В том числе зоны

активного водообмена

60 000

5 000

4 000

300

Полярные ледники

24 000

8 000

Поверхностные воды суши

280

7

Реки

1,2

0,030

Почвенная влага

80

1

Пары атмосферы

14

0,027

Вся гидросфера

1 454 000

2 800

Малый круговорот воды отличается тем, что он происходит в пределах экосистемы, представляя собой круговую циркуляцию воды между гидросферой, почвой, атмосферой, растениями, животными и микроорганизмами.

Круговорот углерода в биосфере начинается с поглощения СО2 при фотосинтезе зелеными растениями и фотосинтезирующими водорослями, включает прохождение углерода по цепям питания в составе разнообразных органических соединений и заканчивается выделением углерода в составе СО2, образующегося при окислении органических веществ в процессе дыхания всех видов организмов или их разложения после гибели. Часть углерода может выводится из круговорота и при последующем захоронении детрита накапливаться в литосфере в виде торфа, угля, горных сланцев, рассеянной органики или осадочных горных пород. Теперь человечество в огромных количествах добывает ископаемое топливо для обеспечения потребностей в энергии и, сжигая его, в определенном смысле завершает круговорот углерода, возвращая в атмосферу углекислый газ.

Другой путь углерода связан с созданием карбонатной системы в различных водоемах, где CO2 переходит в H2CO3, HCO31- и CO32-, а затем с помощью растворенного в воде кальция (реже магния) происходит осаждение карбонатов CaCO3 биогенным и абиогенным путями с образованием залежей известняков.

Круговорот углерода неразрывно связан с круговоротом кислорода – одного из наиболее активных газов, занимающего в составе земной атмосферы второе место после азота. Круговорот кислорода весьма сложен, поскольку он входит в состав множества химических соединений минерального и органического миров, но одним из ключевых звенев его также является СО2 В течение геологической истории Земли содержание СО2 в атмосфере все время снижалось, составляя когда-то 60%, но за последние 100 лет его концентрация вновь стала возрастать и, увеличилась на 25%, что, при сохранении этой тенденции, по мнению многих, может привести к глобальному потеплению. Парниковым эффектом (т.е. способностью задерживать тепловое излучение Земли в космос) обладают многие газы: фреоны (хлорфторуглероды, например - CCl2F2), метан CH4, оксиды азота, пары воды и другие, однако СО2 обеспечивает около 60% этого эффекта, последствиями которого может стать повышение уровня Мирового океана и затопление прибрежных территорий, изменение климата и усиление штормовой активности, смещение климатических зон, таяние многолетней мерзлоты и т.д.

С циркуляцией кислорода связана также проблема разрушения озонового слоя атмосферы, куда в результате человеческой деятельности попадают сотни веществ, многие из которых являются парниковыми газами и разрушителями озона: например, соединение хлора и брома, оксиды азота и серы и т.д.

По прогнозам при сокращении озонового слоя на 5% поток ультрафиолетового излучения увеличится на 10%, а количество заболеваний раком кожи – на 20-30%.

^ Круговорот азота является примером саморегулирующегося цикла с большим резервным фондом в атмосфере, в который азот составляет 78%. Большую роль в этом цикле играют микроорганизмы - азотфиксаторы (клубеньковые бактерии бобовых растений, некоторые водоросли и грибы), переводящие N2 в нитраты, доступные остальным растениям, от которых по пищевым цепям он передается другим организмам экосистемы. Продукты их жизнедеятельности и мертвые тела, разлагаясь с помощью бактерий, возвращают азот в почву, главным образом в аммонийной (NH4+) форме, которую некоторые бактерии - нитрификаторы могут переводить в нитритную (NО2-) или нитратную форму (NО3-), усваиваемые любыми растениями. Восстановление связанного азота до газообразного N2 или оксидов азота NxOy осуществляется бактериями – денитрификаторами.

Проблемы, связанные с круговоротом азота заключаются в том, что для повышения продуктивности агроценозов, человек вносит в почву азотные удобрения, которые усваиваются не более чем на 50%. Смытые в реки нитраты приводят к эвтрофированию водоемов, а накопленные в овощах могут вызвать отравление. Оксиды азота, которые образуются в двигателях внутреннего сгорания и входят в состав фотохимического смога, взаимодействуя на свету с не полностью сгоревшими углеводородами топлива, образуют ядовитые озон и ПАН (пероксиацетилнитрат). Кроме того окислы азота в некоторых районах дают до 40% кислотных дождей, под воздействием которых не только гибнут природные сообщества, но и разрушаются памятники архитектуры.

Кислотные дожди связаны и с круговоротом серы, который имеет свои особенности. Сера – биогенный элемент, который почти не бывает в дефиците, имея обширный резервный фонд в почве в виде сульфатов и образуя свыше 420 минералов. В круговороте серы наряду с геохимическими и метеорологическими процессами большую роль играют микроорганизмы, одни из которых выполняют функцию окисления (например, аэробное окисление H2S до SO42- серо- и тиобактериями) а другие восстановления (анаэробное восстановление SO42- до H2S сульфатредуцирующими бактериями). Сульфат SO42- - это основная доступная для живых организмов форма серы, которая восстанавливается автотрофами и включается в белки.

^ Круговорот фосфора это пример осадочного цикла с резервным фондом в земной коре, где, входя в состав различных минералов, фосфор содержится в виде неорганического фосфат-иона PO43-, который поглощают растения, включая фосфор в состав различных органических соединений, передаваемых по пищевым цепям всем прочим организмам экосистемы. В процессе клеточного дыхания фосфаты вновь поступают в окружающую среду, после чего могут снова поглощаться растениями и начинать новый цикл.

В отличие от углекислого газа, который свободно переносится воздушными потоками, у фосфора нет газовой фазы и, попадая в водоемы, он аккумулируется там, насыщая, а иногда и перенасыщая их экосистемы.

Фосфор и другие минеральные биогены циркулируют в экосистеме лишь в том случае, если содержащие их "отходы" жизнедеятельности откладываются в местах поглощения данного элемента, как это и происходит в естественных экосистемах, но когда в их функционирование вмешивается человек, он нарушает естественный круговорот, перевозя например, удобрения или урожай вместе с аккумулированными биогенами на большие расстояния к потребителям.

Связующим и важнейшим составным элементом биосферы и всех других оболочек планеты является кислород:




Несмотря на то, что в состав живых организмов входят те же химические элементы, соединения которых образуют атмосферу, гидросферу и литосферу, организмы не повторяют полностью химического состава среды.

^ Химические процессы в биосфере

Для химических процессов в биосфере характерны следующие особенности:

– участие в химических и биохимических реакциях большого числа органических и неорганических веществ;

– протекание химических реакций смешанного типа, часто без непосредственного контакта взаимодействующих веществ (например, окислитель и восстановитель в живых организмах в большинстве случаев находятся в разных частях тела);

– неравновесность процессов;

– участие в химических реакциях живых организмов.

^ Примеры химических и фотохимических процессов в биосфере

Фотосинтез:

6CO2 + 6H2O C6H12O6 + 6O2

Дыхание:

C6H12O6 + 6O2 → 6CO2 + 6H2O

Превращение солей в организме человека на примере PbCO3:

PbCO3 + 2HCl = PbCl2 + H2CO3

(с кислотой желудочного сока)

PbCO3 + 2NaOH = [Pb(OH)]2CO3 + Na2CO3

(в щелочной среде кишечника)

PbCO3 + H2S = PbS + H2CO3

(в толстой кишке)

Образование «зубного камня»:

3Ca2+ + 2PO43- = Ca3(PO4)2
1   2   3   4   5   6   7   8   9   10   ...   15

Похожие:

Опорный конспект лекций Основные понятия, термины, законы, схемы Для студентов заочной и дистанционной форм обучения icon Учебно-практическое пособие Владивосток 2007 удк 658 012. 1 Е 72
Ермаченко А. И., д т н. Предпринимательская дяетельность: Учебное пособие для студентов дневной, заочной форм обучения с применением...
Опорный конспект лекций Основные понятия, термины, законы, схемы Для студентов заочной и дистанционной форм обучения icon В. Б. Щенева “микроэкомика” опорный конспект лекций днепропетровск 2005
Учебное пособие предназначено для студентов фдп дну, изучающих дисциплину “Микроэкономика”
Опорный конспект лекций Основные понятия, термины, законы, схемы Для студентов заочной и дистанционной форм обучения icon Аттестационные вопросы
Государственного экзамена для студентов очной, очно-заочной и заочной форм обучения (специальность «Финансы и кредит», специализация...
Опорный конспект лекций Основные понятия, термины, законы, схемы Для студентов заочной и дистанционной форм обучения icon Аттестационные вопросы
Государственного экзамена для студентов очной, очно-заочной и заочной форм обучения (специальность «Финансы и кредит», специализация...
Опорный конспект лекций Основные понятия, термины, законы, схемы Для студентов заочной и дистанционной форм обучения icon Методические указания для студентов очной, очно-заочной и заочной...
К 78 Расчет экономической части дипломного проекта: Методические указания для студентов специальности 090600- альметьевский государственный...
Опорный конспект лекций Основные понятия, термины, законы, схемы Для студентов заочной и дистанционной форм обучения icon Методические указания предназначены для студентов очной и заочной...
Методические указания предназначены для студентов очной и заочной форм обучения специальности 080115 «Таможенное дело» Института...
Опорный конспект лекций Основные понятия, термины, законы, схемы Для студентов заочной и дистанционной форм обучения icon Методические указания для проведения семинарских занятий по дисциплине...
Методические указания предназначены для аудиторной и самостоятельной работы студентов очной и заочной форм обучения по специальности...
Опорный конспект лекций Основные понятия, термины, законы, схемы Для студентов заочной и дистанционной форм обучения icon Программа преддипломной практики специальность: 080507. 65 менеджмент организации Согласовано
Программа предназначена для студентов очной, заочной и очно-заочной форм обучения, а также руководителей практики
Опорный конспект лекций Основные понятия, термины, законы, схемы Для студентов заочной и дистанционной форм обучения icon Конспект лекций для студентов специальности Прикладная информатика (в экономике)
Отличительные признаки высокоэффективных технологий и основные принципы их проектирования
Опорный конспект лекций Основные понятия, термины, законы, схемы Для студентов заочной и дистанционной форм обучения icon Учебное пособие 28365942
Учебное пособие предназначено для студентов всех специальностей дневной, вечерней и заочной форм обучения
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
edushk.ru
Главная страница

Разработка сайта — Веб студия Адаманов